The establishment of an approach to design tunable yellow emission through singly doped single-phased phosphors to obtain white LED-based InGaN chip was reported. BaY2–xS4:xHo3+ phosphors were prepared by the high ...The establishment of an approach to design tunable yellow emission through singly doped single-phased phosphors to obtain white LED-based InGaN chip was reported. BaY2–xS4:xHo3+ phosphors were prepared by the high temperature solid state reaction and characterized by X-ray diffraction and photoluminescence spectra. Under the excitation of 465 nm,the emission spectra of these phosphors exhibited three sharp emission lines peaked at about 492,543 and 661 nm of Ho3+ corresponding to 5F3,5F4 (5S2) and 5F5→5I8 transitions,respectively,with comparable intensities,resulting in a yellow light emission. The luminescence mechanism for Ho3+ in BaY2S4 was explained.展开更多
基金Project supported by the National Natural Science Foundation of China (20971042 and 50772035)the Science and Technology Office of Educa-tion Department of Hunan Province (10A070)the Science and Technology Bureau of Changsha City Government (K0902014-11)
文摘The establishment of an approach to design tunable yellow emission through singly doped single-phased phosphors to obtain white LED-based InGaN chip was reported. BaY2–xS4:xHo3+ phosphors were prepared by the high temperature solid state reaction and characterized by X-ray diffraction and photoluminescence spectra. Under the excitation of 465 nm,the emission spectra of these phosphors exhibited three sharp emission lines peaked at about 492,543 and 661 nm of Ho3+ corresponding to 5F3,5F4 (5S2) and 5F5→5I8 transitions,respectively,with comparable intensities,resulting in a yellow light emission. The luminescence mechanism for Ho3+ in BaY2S4 was explained.