相位平滑伪据算法可以有效抑制多路径效应对伪距的影响,且不存在模糊度固定问题,在GNSS数据处理领域得到广泛研究和应用.本文对Hatch滤波和CNMC(Code Noise and Multipath Correction)相位平滑伪距方法的数学模型进行了系统分析和比较,...相位平滑伪据算法可以有效抑制多路径效应对伪距的影响,且不存在模糊度固定问题,在GNSS数据处理领域得到广泛研究和应用.本文对Hatch滤波和CNMC(Code Noise and Multipath Correction)相位平滑伪距方法的数学模型进行了系统分析和比较,证明了经过CNMC方法平滑后的单频伪距进行无电离层组合与双频Hatch滤波等价.在假定只存在随机误差和各种观测量互不相关的条件下,推导了CNMC方法平滑伪距的精度表达式,得出双频Hatch滤波在初始化的时段内观测噪声大于CNMC方法,经过十余分钟的收敛,其观测噪声逐渐好于CNMC方法.针对北斗导航系统伪距所受多路径影响幅度大,且低频部分比重大的特点,通过对实测北斗短基线相对定位的OMC(Observation Minus Computation)分析,得出相位平滑伪距虽然能大大减弱原始伪距随机误差方法,但不能改善系统误差,其中CNMC方法与原始伪距的系统误差相当,双频Hatch滤波反而增大了系统误差,进一步对该基线的相位平滑伪距进行相对定位试验,得出采用CNMC方法的平滑伪距,三维位置误差精度得到改善,从0.797 m提高至0.541 m,双频Hatch降低了定位精度,位置误差达到1.160 m.展开更多
On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the op...On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the operation control system(OCS)and began to provide basic navigation services to users worldwide.Compared with BDS-2,BDS-3 aims to offer users better navigation signals and higher precision with a series of new technologies.For example,the spaceborne atomic clock of BDS-3 is upgraded for higher performance,the Ka-band inter-satellite link is adopted for inter-satellite ranging and communication,and new B1C and B2a signals are broadcast in addition to B1I and B3I signals(compatible with BDS-2).In addition,a 9-parameter model based on a spherical harmonic function is employed for ionospheric delay corrections.Using the observation data from 18 satellites of the basic system,this paper conducts a comprehensive evaluation of the pseudorange measurement characteristics,signal-in-space(SIS)accuracy of navigation messages and global service capability of BDS-3.The results indicate that the pseudorange measurement multipath effect and observation noise of BDS-3 satellites are better than those of BDS-2;additionally,with the support of inter-satellite links,the user range error(URE)of the BDS-3 satellite broadcast ephemeris is better than 10 cm,the precision of the broadcast clock parameter is better than 1.5 ns,and the SIS accuracy is better than 0.6 m overall.Different from the traditional Klobuchar model,the BeiDou global broadcast ionospheric delay correction model(BDGIM)can provide ionospheric delay corrections better than 70%for worldwide single-frequency users.The service capability evaluation of the basic system consists mainly of the accuracy improvement of the B1I and B3I signals according to BDS-2 as well as the global positioning accuracy of the new signals.These results prove that the BDS-3 basic system has achieved the design goal;that is,both the horizontal and the vertical global positioning accur展开更多
文摘相位平滑伪据算法可以有效抑制多路径效应对伪距的影响,且不存在模糊度固定问题,在GNSS数据处理领域得到广泛研究和应用.本文对Hatch滤波和CNMC(Code Noise and Multipath Correction)相位平滑伪距方法的数学模型进行了系统分析和比较,证明了经过CNMC方法平滑后的单频伪距进行无电离层组合与双频Hatch滤波等价.在假定只存在随机误差和各种观测量互不相关的条件下,推导了CNMC方法平滑伪距的精度表达式,得出双频Hatch滤波在初始化的时段内观测噪声大于CNMC方法,经过十余分钟的收敛,其观测噪声逐渐好于CNMC方法.针对北斗导航系统伪距所受多路径影响幅度大,且低频部分比重大的特点,通过对实测北斗短基线相对定位的OMC(Observation Minus Computation)分析,得出相位平滑伪距虽然能大大减弱原始伪距随机误差方法,但不能改善系统误差,其中CNMC方法与原始伪距的系统误差相当,双频Hatch滤波反而增大了系统误差,进一步对该基线的相位平滑伪距进行相对定位试验,得出采用CNMC方法的平滑伪距,三维位置误差精度得到改善,从0.797 m提高至0.541 m,双频Hatch降低了定位精度,位置误差达到1.160 m.
基金supported by the National Natural Science Foundation of China(Grant Nos.41574029,and 11573035)the Youth Innovation Promotion Association CAS(Grant No.2016242)。
文摘On December 27,2018,the basic system of the third-generation BeiDou navigation satellite system(BDS-3)completed the deployment of its constellation of 18 MEO networking satellites as well as the construction of the operation control system(OCS)and began to provide basic navigation services to users worldwide.Compared with BDS-2,BDS-3 aims to offer users better navigation signals and higher precision with a series of new technologies.For example,the spaceborne atomic clock of BDS-3 is upgraded for higher performance,the Ka-band inter-satellite link is adopted for inter-satellite ranging and communication,and new B1C and B2a signals are broadcast in addition to B1I and B3I signals(compatible with BDS-2).In addition,a 9-parameter model based on a spherical harmonic function is employed for ionospheric delay corrections.Using the observation data from 18 satellites of the basic system,this paper conducts a comprehensive evaluation of the pseudorange measurement characteristics,signal-in-space(SIS)accuracy of navigation messages and global service capability of BDS-3.The results indicate that the pseudorange measurement multipath effect and observation noise of BDS-3 satellites are better than those of BDS-2;additionally,with the support of inter-satellite links,the user range error(URE)of the BDS-3 satellite broadcast ephemeris is better than 10 cm,the precision of the broadcast clock parameter is better than 1.5 ns,and the SIS accuracy is better than 0.6 m overall.Different from the traditional Klobuchar model,the BeiDou global broadcast ionospheric delay correction model(BDGIM)can provide ionospheric delay corrections better than 70%for worldwide single-frequency users.The service capability evaluation of the basic system consists mainly of the accuracy improvement of the B1I and B3I signals according to BDS-2 as well as the global positioning accuracy of the new signals.These results prove that the BDS-3 basic system has achieved the design goal;that is,both the horizontal and the vertical global positioning accur