为提高短期风电功率的预测精度并对功率预测的不确定性进行量化,提出了基于高斯过程回归(Gaussian Process Regression,GPR)和Bootstrap Aggregation(Bagging)的组合预测方法。针对GPR的不稳定性和计算量大的特点,引入了Bagging和训练...为提高短期风电功率的预测精度并对功率预测的不确定性进行量化,提出了基于高斯过程回归(Gaussian Process Regression,GPR)和Bootstrap Aggregation(Bagging)的组合预测方法。针对GPR的不稳定性和计算量大的特点,引入了Bagging和训练数据完全条件独立下的近似方法(Fully Independent Training Conditional Approximation,FITC)。同时,在贝叶斯决策(Bayesian Committee Machine,BCM)的基础上,提出了一种新的权重组合策略。实验表明,基于Bagging和FITC的GPR方法在稳定性、预测精度和训练时间的消耗上都优于传统的GPR方法。在风电功率预测中,改进的GPR可以给出较准确的置信区间,且与极限学习机、最小二乘支持向量机相比较,该方法的预测精度也有明显提高。展开更多
文摘为提高短期风电功率的预测精度并对功率预测的不确定性进行量化,提出了基于高斯过程回归(Gaussian Process Regression,GPR)和Bootstrap Aggregation(Bagging)的组合预测方法。针对GPR的不稳定性和计算量大的特点,引入了Bagging和训练数据完全条件独立下的近似方法(Fully Independent Training Conditional Approximation,FITC)。同时,在贝叶斯决策(Bayesian Committee Machine,BCM)的基础上,提出了一种新的权重组合策略。实验表明,基于Bagging和FITC的GPR方法在稳定性、预测精度和训练时间的消耗上都优于传统的GPR方法。在风电功率预测中,改进的GPR可以给出较准确的置信区间,且与极限学习机、最小二乘支持向量机相比较,该方法的预测精度也有明显提高。