The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,re...The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.展开更多
In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into ...In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into air surroundings. All the orifice plates have identical opening areas or equivalent diameters(De) and their aspect ratios(AR) range from 1 to 6.5. Planar particle image velocimetry(PIV) is used to measure the velocity field at the same Reynolds number of Re = 5 × 10^4,where Re = Ue De/ν with Ue being the exit bulk velocity and ν the kinematic viscosity of fluid. The mean and turbulent velocity fields of all the five jets are compared in detail. Results show that the noncircular jets can enhance the entrainment rate, reflected by the higher acceleration rates of mean velocity decay and spread, shorten the length of the unmixed core,expedite the increase of turbulent intensity compared with the circular counterpart shortened unmixed core, and increase turbulent intensity comparing to the circular counterpart. Among the five jets, the rectangular jet(AR = 6.5) produces the greatest decay rate of the near-field mean velocity, postpones the position at which the 鈥榓xis-switching鈥檖henomenon occurs. This supports that axis switching phenomenon strongly depends on jet initial conditions. In addition, the hump in the centerline variation of the turbulence intensity is observed in the rectangular and triangular jets, but not in the circular jet, nor in diamond jet nor in notched-rectangular jet.展开更多
基金the support of the Fundamental Research Funds for the Central Universities (Grant No. 3132013029)the National Natural Science Foundation of China (Grant Nos. 10921202 and11072005)
文摘The present study experimentally investigated the near-field flow mixing characteristics of two turbulent jets issuing from equilateral triangular and circular orifice plates into effectively unbounded surroundings,respectively.Planar particle image velocimetry(PIV) was applied to measure the velocity field at the same Reynolds number of Re=50,000,where Re = UeDe /with Ue being the exit bulk velocity and the kinematic viscosity of fluid,D e the equivalent diameters.The instantaneous velocity,mean velocity,Reynolds stresses were obtained.From the mean velocity field,the centreline velocity decay rate and half-velocity width were derived.Comparing the mixing characteristics of the two jets,it is found that the triangular jet has a faster mixing rate than the circular counterpart.The triangular jet entrainments with the ambient fluid at a higher rate in the near field.This is evidenced by a shorter unmixed core,faster Reynolds stress and centreline turbulence intensity growth.The primary coherent structures in the near field are found to break down more rapidly in the triangular jet as compared to the circular jet.Over the entire measurement region,the triangular jet maintained a higher rate of decay and spread.Moreover,all components of Reynolds stress of the triangular jet appear to reach their peaks earlier,and then decay more rapidly than those of the circular jet.In addition,the axis-switching phenomenon is observed in the triangular jet.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant No.3132014050)the General Science Research Project of the Education Department of Liaoning Province,China(Grant No.L2013198)+1 种基金the Natural Science Foundation of Liaoning Province,China(Grant No.L2014025012)the National Natural Science Foundation of China(Grant Nos.10921202 and 11072005)
文摘In this paper, we experimentally investigate the near-field flow characteristics of turbulent free jets respectively issued from circular, triangular, diamond, rectangular, and notched-rectangular orifice plates into air surroundings. All the orifice plates have identical opening areas or equivalent diameters(De) and their aspect ratios(AR) range from 1 to 6.5. Planar particle image velocimetry(PIV) is used to measure the velocity field at the same Reynolds number of Re = 5 × 10^4,where Re = Ue De/ν with Ue being the exit bulk velocity and ν the kinematic viscosity of fluid. The mean and turbulent velocity fields of all the five jets are compared in detail. Results show that the noncircular jets can enhance the entrainment rate, reflected by the higher acceleration rates of mean velocity decay and spread, shorten the length of the unmixed core,expedite the increase of turbulent intensity compared with the circular counterpart shortened unmixed core, and increase turbulent intensity comparing to the circular counterpart. Among the five jets, the rectangular jet(AR = 6.5) produces the greatest decay rate of the near-field mean velocity, postpones the position at which the 鈥榓xis-switching鈥檖henomenon occurs. This supports that axis switching phenomenon strongly depends on jet initial conditions. In addition, the hump in the centerline variation of the turbulence intensity is observed in the rectangular and triangular jets, but not in the circular jet, nor in diamond jet nor in notched-rectangular jet.