Applying the Au/PATP/Au nanoparticles sandwich structUre as the model system, a semi-quantitative study on the SERS intensity with the size of Au nanoparticles has been performed. It shows that the SERS intensity incr...Applying the Au/PATP/Au nanoparticles sandwich structUre as the model system, a semi-quantitative study on the SERS intensity with the size of Au nanoparticles has been performed. It shows that the SERS intensity increases with the size of Au nanoparticles from 15. 7nm to 66. onm. The above trend agrees with the calculated value by Schatz, while the SERS enhancement factor is 2-3 orders of the calculated value.展开更多
Poly(N-vinyl-2-pyrrolidone)-protected Pt/Au bimetallic nanoparticles were obtained by reducing the mixture of HAuCl4 and H2PtCl6 with sodium borohydride.UV-vis spectra,transmission electronic microscopy and X-ray di...Poly(N-vinyl-2-pyrrolidone)-protected Pt/Au bimetallic nanoparticles were obtained by reducing the mixture of HAuCl4 and H2PtCl6 with sodium borohydride.UV-vis spectra,transmission electronic microscopy and X-ray diffraction reveal that the prepared bimetallic nanoparticles are of alloy structure.展开更多
A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with...A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.展开更多
Monodisperse Au nanoparticles(NPs)have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1,2,3,4-tetrahydronaphthalene solution o...Monodisperse Au nanoparticles(NPs)have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1,2,3,4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine.The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm.They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures.When deposited on a graphitized porous carbon support,the NPs are highly active for CO oxidation,showing 100%CO conversion at-45°C.展开更多
Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly...Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350-600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.展开更多
以3.5 G PAMAM(3.5代聚酰胺-胺型)树状大分子为保护剂,利用微波法还原HAuCl4溶液制备金纳米粒子.考察了当3.5 G PAMAM与HAuCl4物质的量的比一定时,微波照射不同时间对金纳米粒子大小及形状的影响;以及同一照射条件下,3.5 G PAMAM与HAuCl...以3.5 G PAMAM(3.5代聚酰胺-胺型)树状大分子为保护剂,利用微波法还原HAuCl4溶液制备金纳米粒子.考察了当3.5 G PAMAM与HAuCl4物质的量的比一定时,微波照射不同时间对金纳米粒子大小及形状的影响;以及同一照射条件下,3.5 G PAMAM与HAuCl4不同的物质的量比值对金纳米粒子大小及形状的影响.利用紫外可见分光光度计、透射电子显微镜对其进行了表征.结果表明,当3.5 G PAMAM与HAuCl4物质的量的比值一定时,金纳米粒子的形状和大小受微波照射时间长短的影响不大;适当延长照射时间,制得的金纳米粒子的分散性较好.在相同照射条件下,随着3.5 G PAMAM与HAu-Cl4物质的量比值的减小,得到的金纳米粒子粒径逐渐变大,且分散性变差.展开更多
文摘Applying the Au/PATP/Au nanoparticles sandwich structUre as the model system, a semi-quantitative study on the SERS intensity with the size of Au nanoparticles has been performed. It shows that the SERS intensity increases with the size of Au nanoparticles from 15. 7nm to 66. onm. The above trend agrees with the calculated value by Schatz, while the SERS enhancement factor is 2-3 orders of the calculated value.
文摘Poly(N-vinyl-2-pyrrolidone)-protected Pt/Au bimetallic nanoparticles were obtained by reducing the mixture of HAuCl4 and H2PtCl6 with sodium borohydride.UV-vis spectra,transmission electronic microscopy and X-ray diffraction reveal that the prepared bimetallic nanoparticles are of alloy structure.
基金financially supported by National Natural Science Foundation of China(No.61874137)。
文摘A recent progress in new emerging two-dimensional(2 D)materials has provided promising opportunity for gas sensing in ultra-low detectable concentration.In this work,we have demonstrated a flexible NO2 gas sensor with porous structure graphene on polyethylene terephthalate substrates operating at room temperature.The gas sensor exhibited good performance with response of 1.2%and a fast response time within 30 s after exposure to50×10^-9 NO2 gas.As porous structure of graphene increased the surface area,the sensor showed high sensitivity of ppb level for NO2 detection.Au nanoparticles were decorated on the surface of the porous structure graphene skeleton,resulting in an incensement of response compared with pristine graphene.Au nanoparticles-decorated graphene exhibits not only better sensitivity(1.5-1.6 times larger than pristine graphene)for NO2 gas detection,but also fast response.The sensor was found to be robust and sensitive under the cycling bending test,which could also be ascribed to the merits of graphene.This porous structure graphene-based gas sensor is expected to enable a simple and inexpensive flexible gas sensing platform.
基金by NSF/DMR 0606264 and a GAANN fellowship(Y.Lee).
文摘Monodisperse Au nanoparticles(NPs)have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1,2,3,4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine.The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm.They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures.When deposited on a graphitized porous carbon support,the NPs are highly active for CO oxidation,showing 100%CO conversion at-45°C.
基金LLP would like to thank the Chinese Scholarship Council (CSC) for financial aid. YL gratefully acknowledges the support of a US National Science Foundation CAREER award (No. DMRJ0847786). YDL would like to thank the National Natural Science Foundation of China (No. 90606006) for financial support. JZZ is grateful to the Basic Energy Sciences Division of the US Department of Energy (DOE) (No. 05ER4623A00) for financial support.
文摘Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350-600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.
文摘以3.5 G PAMAM(3.5代聚酰胺-胺型)树状大分子为保护剂,利用微波法还原HAuCl4溶液制备金纳米粒子.考察了当3.5 G PAMAM与HAuCl4物质的量的比一定时,微波照射不同时间对金纳米粒子大小及形状的影响;以及同一照射条件下,3.5 G PAMAM与HAuCl4不同的物质的量比值对金纳米粒子大小及形状的影响.利用紫外可见分光光度计、透射电子显微镜对其进行了表征.结果表明,当3.5 G PAMAM与HAuCl4物质的量的比值一定时,金纳米粒子的形状和大小受微波照射时间长短的影响不大;适当延长照射时间,制得的金纳米粒子的分散性较好.在相同照射条件下,随着3.5 G PAMAM与HAu-Cl4物质的量比值的减小,得到的金纳米粒子粒径逐渐变大,且分散性变差.