针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击...针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。展开更多
文摘人工养殖的雄性梅花鹿在发情期间攻击行为剧增,易造成鹿茸损伤,自动监测其攻击行为能为研究减少攻击行为提供重要依据。本文基于注意力机制和长短记忆序列研究了一种光流注意力网络(Optical flow attention attacking recognition network,OAAR),对梅花鹿的攻击、采食、躺卧、站立行为进行识别。OAAR网络包括前置网络、基础网络和时序网络,前置网络由LK光流算法(Lucas kanade optical flow algorithm)组成,用于提取RGB数据光流信息;基础网络中采用自注意力模块,将ResNet-152网络改造为ARNet152(Attention ResNet-152),用于将RGB、光流数据集经ARNet152提取特征后输入时序网络;时序网络采用添加注意力模块的长短记忆序列(Attention long short term network,ALST),并通过分类器输出行为得分和分类结果。视频数据集包括10942段,共310574帧,划分为攻击、采食、站立和躺卧4个大类,攻击行为又划分为撞击、脚踢和追逐3个小类;训练集、验证集和测试集比例为3∶1∶1。研究结果显示,OAAR模型在测试集上正确率为97.45%、召回率为97.46%、F1值为97.45%,ROC曲线中各类识别效果良好,特征嵌入图中各类行为特征区分度较高,各项结果均优于LSTM、双流I3D和双流ITSN网络,具有较好的泛化能力和抗干扰性。在本研究算法基础上集成的鹿只行为自动识别采集系统,为提高梅花鹿养殖生产管理水平和生产效率提供了技术基础。
文摘针对当前攻击图模型中很少考虑攻击事件对所有属性节点置信度的动态影响,提出一种基于贝叶斯攻击图的动态风险评估(dynamic risk assessment based on Bayesian attack graphs,DRABAG)模型。该模型运用贝叶斯信念网络建立用于描述攻击行为中多步原子攻击间因果关系的概率攻击图,其中,采用通用漏洞评分系统指标计算漏洞利用成功概率,并利用局部条件概率分布表评估属性节点的静态安全风险;进而结合入侵检测系统观测到的实时攻击事件,运用贝叶斯推理方法对单步攻击行为的后验概率进行动态更新,最终实现对目标网络整体安全性的评估。实验结果表明,该模型可评估动态安全风险和推断攻击路径,为实施安全防护策略提供依据。