The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the t...The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility(SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.展开更多
Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, ...Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.U1232112)the National Key Basic Research Program of China(Grant No.2012CB825700)
文摘The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility(SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.
文摘Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.