Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrate...Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrates that the pitch standard is (212.8±0.1) nm with a peak-to-valley-height (PTVH) better than 20 nm. The measurement results show the high period accuracy of traceability with the standing laser wavelength (λ/2 = 212.78 nm). The Cr nano-grating covers a 1000μm×500 μm area, with a PTVH better than 10 nm. The feature width broadening of the Cr nanostructure has been experimentally observed along the direction of the standing waves. The PTVH along the Gaussian laser direction is similar to a Gaussian distribution. Highly uniform periodic nanostructures with a big area at the millimeter scale, and the surface growth uniformity of the Cr nano-grating, show its great potential in the application of a traceable pitch standard at trans-scales.展开更多
与光子和电子不同,原子的激发亚稳态具有方便操作的内能态结构,这使利用内能态的光学淬灭原理实现光刻技术成为现实.基于原子光学的中性原子束光刻技术是下一代光刻技术(the next generation lithography,NGL)的一种,它可分两种途径实现...与光子和电子不同,原子的激发亚稳态具有方便操作的内能态结构,这使利用内能态的光学淬灭原理实现光刻技术成为现实.基于原子光学的中性原子束光刻技术是下一代光刻技术(the next generation lithography,NGL)的一种,它可分两种途径实现:激光驻波原子直沉积技术和亚稳态中性原子光刻技术.前者可以实现图案的纳米尺度特征、大面积平行沉积和高分辨率;后者结合有效的抗蚀剂,同样可以实现纳米图形制造,在基板上获得的尖锐边缘分辨率目前可达40nm.两种途径的原理相差甚远,但最终获得的结果相似.展开更多
Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a ...Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.展开更多
One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fo...One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.展开更多
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123022)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10804084)
文摘Atom lithography with chromium can be utilized to fabricate a pitch standard, which is chrectly traceable to me wavelength of the laser standing waves. The result of a calibrated commercial AFM measurement demonstrates that the pitch standard is (212.8±0.1) nm with a peak-to-valley-height (PTVH) better than 20 nm. The measurement results show the high period accuracy of traceability with the standing laser wavelength (λ/2 = 212.78 nm). The Cr nano-grating covers a 1000μm×500 μm area, with a PTVH better than 10 nm. The feature width broadening of the Cr nanostructure has been experimentally observed along the direction of the standing waves. The PTVH along the Gaussian laser direction is similar to a Gaussian distribution. Highly uniform periodic nanostructures with a big area at the millimeter scale, and the surface growth uniformity of the Cr nano-grating, show its great potential in the application of a traceable pitch standard at trans-scales.
文摘与光子和电子不同,原子的激发亚稳态具有方便操作的内能态结构,这使利用内能态的光学淬灭原理实现光刻技术成为现实.基于原子光学的中性原子束光刻技术是下一代光刻技术(the next generation lithography,NGL)的一种,它可分两种途径实现:激光驻波原子直沉积技术和亚稳态中性原子光刻技术.前者可以实现图案的纳米尺度特征、大面积平行沉积和高分辨率;后者结合有效的抗蚀剂,同样可以实现纳米图形制造,在基板上获得的尖锐边缘分辨率目前可达40nm.两种途径的原理相差甚远,但最终获得的结果相似.
基金Project supported by the Shanghai Nanoscience Foundation,China (Grant Nos. 0852nm07000 and 0952nm07000)the National Natural Science Foundation of China (Grant Nos. 10804084 and 91123022)+1 种基金the National Key Technology R & D Program,China (Grant No. 2006BAF06B08)the Specialized Research Fund for the Doctoral Program of Ministry of High Education of China (Grant No. 200802471008)
文摘Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.
基金Supported by the Science Foundation of Guangxi Education Department (Grant No. 200807MS006)
文摘One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size,fourth-order Runge-Kutta type algorithm.The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW,the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW,but with laser power increase,equal to 50 mW,the nonmeter structure forms the multi-crests and exacerbates.