Lentivirus carrying the Atohl gene can infect Corti's organ and express a hair-like cell surface marker in the supporting cell area. However, expression of the gene carried by adenovirus is instantaneous, which undou...Lentivirus carrying the Atohl gene can infect Corti's organ and express a hair-like cell surface marker in the supporting cell area. However, expression of the gene carried by adenovirus is instantaneous, which undoubtedly limits its clinical application. Lentivirus acts as a carrier that can stably and continuously express genes. In this study, the cochlear structure and hearing level were not affected, and Atohl gene carried by lentivirus promoted the production of hair-like cells in the cochlear supporting cell area. This led to expression of the hair-like cell surface marker myosin 7a 30 days after lentivirus carrying Atohl was microinjected into the cochlear round window of rats.展开更多
Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals...Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicin- induced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atohl. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.展开更多
基金supported by grants from the National Basic Research Program of China (973 Program), No. 2012CB967900, 2012CB967904the National Natural Science Foundation of China, No. 81070782+2 种基金the Natural Science Foundation of Zhejiang Province, China, No. 30672308the Qianjiang Talent Project of Science and Technology Ministry in Zhejiang Province, No. 2011R10014the Natural Science Foundation of Ningbo, No. 2011A610042
文摘Lentivirus carrying the Atohl gene can infect Corti's organ and express a hair-like cell surface marker in the supporting cell area. However, expression of the gene carried by adenovirus is instantaneous, which undoubtedly limits its clinical application. Lentivirus acts as a carrier that can stably and continuously express genes. In this study, the cochlear structure and hearing level were not affected, and Atohl gene carried by lentivirus promoted the production of hair-like cells in the cochlear supporting cell area. This led to expression of the hair-like cell surface marker myosin 7a 30 days after lentivirus carrying Atohl was microinjected into the cochlear round window of rats.
基金This work was supported by grants from the National Basic Research Program of China (973 Program, No. 2015CB965000), National Natural Science Foundation of China (Nos. 81400463, 81570911, 81470692, 81230019, 81371094, 81500790, 81570921, 31500852, and 31501194), J iangsu Province Natural Science Foundation (Nos. BK20150022, BK20140620, and BK20150598), Fundamental Research Funds for the Central Universities (Nos. 2242014R- 30022 and 021414380037), the Yingdong Huo Education Founda- tion, the Open Research Funds of the State Key Laboratory of Genetic Engineering, Fudan University (No. SKLGE-1407), Major Program of Shanghai Committee of Science and Technology (Nos. 14DJ1400203 and 11441901000), Doctoral Fund of Chinese Ministry of Education (No. 20120071110077), and China Post- doctoral Science Foundation Funded Project (No. 2014M551328).
文摘Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicin- induced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atohl. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.