This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the im...This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the impact of pollutants on the populations living around the power plant. The methodology used is as follows: the Gaussian model is used for the representation of the dispersion in the form of a plume, the finite difference method for digital resolution. Finally, dispersion charts are constructed which allow the heights of the chimneys to be fixed for which the concentrations of pollutants discharged comply with ambient air quality standards. The results obtained using the simulation made in the MATLAB software version 2016 show that, for a wind regime of 1.5 m/s;we have a predicted distance of 150 m at which the concentration is canceled out. Then, for the wind speed of 2 m/s;we had a predicted distance of 125 m and finally for a wind speed of 2.5 m/s;we observed the 120 m distance at which the concentration is canceled. In addition, for the same wind regimes, the attenuation of pollutants at ground level is obtained for a height of 60 m.展开更多
文摘This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the impact of pollutants on the populations living around the power plant. The methodology used is as follows: the Gaussian model is used for the representation of the dispersion in the form of a plume, the finite difference method for digital resolution. Finally, dispersion charts are constructed which allow the heights of the chimneys to be fixed for which the concentrations of pollutants discharged comply with ambient air quality standards. The results obtained using the simulation made in the MATLAB software version 2016 show that, for a wind regime of 1.5 m/s;we have a predicted distance of 150 m at which the concentration is canceled out. Then, for the wind speed of 2 m/s;we had a predicted distance of 125 m and finally for a wind speed of 2.5 m/s;we observed the 120 m distance at which the concentration is canceled. In addition, for the same wind regimes, the attenuation of pollutants at ground level is obtained for a height of 60 m.