In this article, a model of a rotor with an asymmetric disk is presented in order to represent Campbell’s diagrams and instability maps as a function of the rotations of the support which can significantly change the...In this article, a model of a rotor with an asymmetric disk is presented in order to represent Campbell’s diagrams and instability maps as a function of the rotations of the support which can significantly change the dynamic behavior of the rotor. Critical rotating speeds can also lead to unacceptable levels of vibration. Indeed, the critical speeds are a function of the dynamic rigidity of the rotating systems and the presence of the gyroscopic forces creates a dependence between the rotating speed of rotation and the natural frequencies to such structures (the CAMPBELL diagrams): this implies that the correct determination of the critical speeds is one of the essential elements when sizing such dynamic systems.展开更多
Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel ...Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.展开更多
Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong...Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong candidate for high-speed driving fields. Under the circumstances, a 12/14 BSRM with hybrid stator pole has been proposed due to its high output torque density and excellent decoupling characteristics between torque and suspension force. However, this motor has torque dead-zone, which leads to problems of self-start at some rotor positions and large torque ripple during normal operation. To solve the existing problems in the 12/14 type, an asymmetric rotor pole type BSRM is proposed. The structure and design process of the proposed motor is presented in detail. The characteristics of the proposed motor is analyzed and compared with that of the 12/14 type. Furthermore, prototype of the proposed structure is designed, manufactured and experimented. Finally, simulation and test results are illustrated and analyzed to prove the validity of the proposed structure.展开更多
This study proposes a novel asymmetric rotor pole design for wound field synchronous machines(WFSMs),which can achieve high saliency ratio and also low torque ripple.The key point is the optimal design of the asymmetr...This study proposes a novel asymmetric rotor pole design for wound field synchronous machines(WFSMs),which can achieve high saliency ratio and also low torque ripple.The key point is the optimal design of the asymmetric rotor pole with the inverse-cosine-shaped(ICS)plus reverse 3rd harmonic shaping.The asymmetric rotor pole can help to improve the average output torque by enhancing the saliency ratio.The reverse 3rd harmonic shaping on the rotor pole surface is mainly used to reduce the torque ripple.To certify the effectivity of the proposed design,three-phase 54-slot/6-pole 4.7kW WFSMs with uniform air gap and with non-uniform air gap shaped by the ICS plus optimum reverse 3rd harmonic are utilized as the basic model and referenced model for comparison.For the referenced model,the optimum amplitude of reverse 3rd harmonic is preferred as 1/6.Finally,all electromagnetic characteristics of the investigated machines are predicted by the finite-element method(FEM).The highest saliency ratio and comparatively low torque ripple have been verified.展开更多
文摘In this article, a model of a rotor with an asymmetric disk is presented in order to represent Campbell’s diagrams and instability maps as a function of the rotations of the support which can significantly change the dynamic behavior of the rotor. Critical rotating speeds can also lead to unacceptable levels of vibration. Indeed, the critical speeds are a function of the dynamic rigidity of the rotating systems and the presence of the gyroscopic forces creates a dependence between the rotating speed of rotation and the natural frequencies to such structures (the CAMPBELL diagrams): this implies that the correct determination of the critical speeds is one of the essential elements when sizing such dynamic systems.
基金supported in part by the National Natural Science Foundation of China under Grant 52077123 and 51737008in part by the Natural Science Foundation of Shandong Province of China for Outstanding Young Scholars,under Grant ZR2021YQ35。
文摘Permanent magnet assisted synchronous reluctance motor(PMA-SynRM)is a kind of high torque density energy conversion device widely used in modern industry.In this paper,based on the basic topology of PMA-SynRM,a novel PMA-SynRM of asymmetric rotor with position-biased magnet is proposed.The asymmetric rotor design with position-biased magnet realizes the concentration of magnetic field lines in the motor air gap to obtain higher electromagnetic torque,and makes both of magnetic and reluctance torque obtain the peak value at the same current phase angle.The asymmetric rotor configuration is theoretically illustrated by space vector diagram,and the feasibility of high torque performance of the motor is verified.Through the finite element simulation,the effect of the side barrier on output torque and the Mises stress under the rotor asymmetrical design are analyzed.Then the motor characteristics including airgap flux density,back EMF,magnetic torque,reluctance torque,torque ripple,losses,and efficiency are calculated for both the basic and proposed PMA-SynRMs.The results show that the proposed PMA-SynRM has higher torque and efficiency than the basic topology.Moreover,the torque ripple of the proposed PMA-SynRM is reduced by the method with harmonic current injection,and the torque characteristics in the whole current cycle are analyzed.Finally,the endurance to avoid PM demagnetization is confirmed based on the PM remanence calculation.
基金supported by National Natural Science Foundation of China under Grant 52077141 and 51920105011Young and Middle-Aged Scientific and Technological Innovation Talent Program of Shenyang City of Liaoning Province of China under Grant RC200427。
文摘Bearingless switched reluctance motor(BSRM) not only combines the merits of bearingless motor(BM) and switched reluctance motor(SRM), but also decreases the vibration and acoustic noise of SRM, so it could be a strong candidate for high-speed driving fields. Under the circumstances, a 12/14 BSRM with hybrid stator pole has been proposed due to its high output torque density and excellent decoupling characteristics between torque and suspension force. However, this motor has torque dead-zone, which leads to problems of self-start at some rotor positions and large torque ripple during normal operation. To solve the existing problems in the 12/14 type, an asymmetric rotor pole type BSRM is proposed. The structure and design process of the proposed motor is presented in detail. The characteristics of the proposed motor is analyzed and compared with that of the 12/14 type. Furthermore, prototype of the proposed structure is designed, manufactured and experimented. Finally, simulation and test results are illustrated and analyzed to prove the validity of the proposed structure.
文摘This study proposes a novel asymmetric rotor pole design for wound field synchronous machines(WFSMs),which can achieve high saliency ratio and also low torque ripple.The key point is the optimal design of the asymmetric rotor pole with the inverse-cosine-shaped(ICS)plus reverse 3rd harmonic shaping.The asymmetric rotor pole can help to improve the average output torque by enhancing the saliency ratio.The reverse 3rd harmonic shaping on the rotor pole surface is mainly used to reduce the torque ripple.To certify the effectivity of the proposed design,three-phase 54-slot/6-pole 4.7kW WFSMs with uniform air gap and with non-uniform air gap shaped by the ICS plus optimum reverse 3rd harmonic are utilized as the basic model and referenced model for comparison.For the referenced model,the optimum amplitude of reverse 3rd harmonic is preferred as 1/6.Finally,all electromagnetic characteristics of the investigated machines are predicted by the finite-element method(FEM).The highest saliency ratio and comparatively low torque ripple have been verified.