This research work is focused on both experimental and numerical analysis of laser surface hardening of AISI M2 high speed tool steel. Experimental analysis aims at clarifying effect of different laser processing para...This research work is focused on both experimental and numerical analysis of laser surface hardening of AISI M2 high speed tool steel. Experimental analysis aims at clarifying effect of different laser processing parameters on properties and performance of laser surface treated specimens. Numerical analysis is concerned with analytical approaches that provide efficient tools for estimation of surface temperature, surface hardness and hardened depth as a function of laser surface hardening parameters. Results indicated that optimization of laser processing parameters including laser power, laser spot size and processing speed combination is of considerable importance for achieving maximum surface hardness and deepest hardened zone. In this concern, higher laser power, larger spot size and lower processing speed are more efficient. Hardened zone with 1.25 mm depth and 996 HV surface hardness was obtained using 1800 W laser power, 4 mm laser spot size and 0.5 m/min laser processing speed. The obtained maximum hardness of laser surface treated specimen is 23% higher than that of conventionally heat treated specimen. This in turn has resulted in 30% increase in wear resistance of laser surface treated specimen. Numerical analysis has been carried out for calculation of temperature gradient and cooling rate based on Ashby and Easterling equations. Then, surface hardness and hardened depth have been numerically estimated based on available Design-Expert software. Numerical results indicated that cooling rate of laser surface treated specimen is high enough to be beyond the nose of the CCT diagram of the used steel that in turn resulted in a hard/martensitic structure. Numerically estimated values of surface temperature, surface hardness and hardened depth as a function of laser processing parameters are in a good agreement with experimental results. Laser processing charts indicating expected values of surface temperature, surface hardness and hardened depth as a function of different wider range of laser processing par展开更多
The effect of porosity on compressive,bending,and tensile properties of the porous tantalum scaffolds fabricated by electron beam powder bed fusion(EB-PBF)was investigated.The porous tantalum scaffolds with porosity f...The effect of porosity on compressive,bending,and tensile properties of the porous tantalum scaffolds fabricated by electron beam powder bed fusion(EB-PBF)was investigated.The porous tantalum scaffolds with porosity from 69%to 77.8%were obtained by varying the designed porosity and adjusting the processing parameters.It is found that the pores and unfused powder decrease with the increase of deposited energy density.The decrease of porosity leads to an improvement in mechanical properties.The relevancy between compressive/bending/tensile yield strength and relative density can be described appropriately by exponential model,while the relationship between elastic modulus and relative density is in good agreement with the Gibson-Ashby model.All the porous tantalum scaffolds exhibit good ductility in compressive,bending and tensile tests.No fragmentation of struts is observed during the compression process,but cracks are formed on the strut surface after 90°bending,mainly due to the high sensibility to defects caused by the oxide.展开更多
文摘This research work is focused on both experimental and numerical analysis of laser surface hardening of AISI M2 high speed tool steel. Experimental analysis aims at clarifying effect of different laser processing parameters on properties and performance of laser surface treated specimens. Numerical analysis is concerned with analytical approaches that provide efficient tools for estimation of surface temperature, surface hardness and hardened depth as a function of laser surface hardening parameters. Results indicated that optimization of laser processing parameters including laser power, laser spot size and processing speed combination is of considerable importance for achieving maximum surface hardness and deepest hardened zone. In this concern, higher laser power, larger spot size and lower processing speed are more efficient. Hardened zone with 1.25 mm depth and 996 HV surface hardness was obtained using 1800 W laser power, 4 mm laser spot size and 0.5 m/min laser processing speed. The obtained maximum hardness of laser surface treated specimen is 23% higher than that of conventionally heat treated specimen. This in turn has resulted in 30% increase in wear resistance of laser surface treated specimen. Numerical analysis has been carried out for calculation of temperature gradient and cooling rate based on Ashby and Easterling equations. Then, surface hardness and hardened depth have been numerically estimated based on available Design-Expert software. Numerical results indicated that cooling rate of laser surface treated specimen is high enough to be beyond the nose of the CCT diagram of the used steel that in turn resulted in a hard/martensitic structure. Numerically estimated values of surface temperature, surface hardness and hardened depth as a function of laser processing parameters are in a good agreement with experimental results. Laser processing charts indicating expected values of surface temperature, surface hardness and hardened depth as a function of different wider range of laser processing par
基金supported by the Key R&D Program of Guangdong Province,China(Nos.2019B090904001,2018B090906003)。
文摘The effect of porosity on compressive,bending,and tensile properties of the porous tantalum scaffolds fabricated by electron beam powder bed fusion(EB-PBF)was investigated.The porous tantalum scaffolds with porosity from 69%to 77.8%were obtained by varying the designed porosity and adjusting the processing parameters.It is found that the pores and unfused powder decrease with the increase of deposited energy density.The decrease of porosity leads to an improvement in mechanical properties.The relevancy between compressive/bending/tensile yield strength and relative density can be described appropriately by exponential model,while the relationship between elastic modulus and relative density is in good agreement with the Gibson-Ashby model.All the porous tantalum scaffolds exhibit good ductility in compressive,bending and tensile tests.No fragmentation of struts is observed during the compression process,but cracks are formed on the strut surface after 90°bending,mainly due to the high sensibility to defects caused by the oxide.