A series of chiral salen\|Co(Ⅱ) complexes have been synthesized and characterized, and they are for the first time used as the catalyst for asymmetric borohydride reduction of aromatic ketone. Enantiometric exesses u...A series of chiral salen\|Co(Ⅱ) complexes have been synthesized and characterized, and they are for the first time used as the catalyst for asymmetric borohydride reduction of aromatic ketone. Enantiometric exesses up to 28.2% have been achieved at the room temperature. The influence of substituent on enantioselectivity of the reactions was studied.展开更多
Asymmetric reduction of ct-hydroxy aromatic ketones was carded out by using carrot enzymes system, yielding corresponding chiral vicinal diols with special functional groups. The optimum reaction conditions were obtai...Asymmetric reduction of ct-hydroxy aromatic ketones was carded out by using carrot enzymes system, yielding corresponding chiral vicinal diols with special functional groups. The optimum reaction conditions were obtained after investigation of various influencing factors. Chiral aryl vicinal diols were produced with good yields and excellent enantiomeric excesses under appropriate conditions. Meanwhile, the steric factors and electronic effects of the substituents on the aromatic ring were shown to have an interesting influence on both yield and enantioselectivity.展开更多
The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-o-tolylphosphino)-benzyl]cyclohexane-1,2-diamine(2) were employed for asymmetric transfer hydrogenation of aro...The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-o-tolylphosphino)-benzyl]cyclohexane-1,2-diamine(2) were employed for asymmetric transfer hydrogenation of aromatic ketones, giving the corresponding optically active alcohols with high activities(up to 99% conversion) and excellent enantioselectivities(up to 96% e.e.) under mild conditions. The chiral ruthenium(Ⅱ) complex (R,R)-3 has been prepared and characterized by NMR and X-ray crystallography.展开更多
文摘A series of chiral salen\|Co(Ⅱ) complexes have been synthesized and characterized, and they are for the first time used as the catalyst for asymmetric borohydride reduction of aromatic ketone. Enantiometric exesses up to 28.2% have been achieved at the room temperature. The influence of substituent on enantioselectivity of the reactions was studied.
基金supported by the National Natural Science Foundation of China(No.21176203)the National Special Fund for State Key Laboratory of Bioreactor Engineering(No.2060204)the Fundamental Research Funds for the Central Universities(No.JUSRP211A12)
文摘Asymmetric reduction of ct-hydroxy aromatic ketones was carded out by using carrot enzymes system, yielding corresponding chiral vicinal diols with special functional groups. The optimum reaction conditions were obtained after investigation of various influencing factors. Chiral aryl vicinal diols were produced with good yields and excellent enantiomeric excesses under appropriate conditions. Meanwhile, the steric factors and electronic effects of the substituents on the aromatic ring were shown to have an interesting influence on both yield and enantioselectivity.
基金Supported by the National Natural Science Foundation of China(Nos.2042300220703034)+1 种基金the Natural Science Foundation of Fujian Province of China(No.2008J0235)the Natural Science Foundation of Guangxi Province of China(No. 0991016)
文摘The efficient catalytic systems generated in situ from RuCl2(PPh3)3 and chiral ligands N,N-bis[2-(di-o-tolylphosphino)-benzyl]cyclohexane-1,2-diamine(2) were employed for asymmetric transfer hydrogenation of aromatic ketones, giving the corresponding optically active alcohols with high activities(up to 99% conversion) and excellent enantioselectivities(up to 96% e.e.) under mild conditions. The chiral ruthenium(Ⅱ) complex (R,R)-3 has been prepared and characterized by NMR and X-ray crystallography.