Objective: To observe the proliferation inhibition, apoptosis, and cell proliferation cycle of human lung carcinoma cell line A549 treated with Inotodiol extracts from Inonotus obliquus and explore the possibility of...Objective: To observe the proliferation inhibition, apoptosis, and cell proliferation cycle of human lung carcinoma cell line A549 treated with Inotodiol extracts from Inonotus obliquus and explore the possibility of Inotodiol extracts from Inonotus obliquus as a new tumor chemopreventive drug. Methods: Human lung cancer cell line A549 was treated with different concentrations of Inotodiol, the effects of Inotodiol on cell apoptosis, the expression of Ki-67, Bcl-2, Bax, and p53 and cell cycle were detected by TUNEL assay, immunohistochemistry, and flow cytometry assay respectively. Results: Inotodiol extracts had antiproliferation effect on human lung carcinoma cell line A549. The expression of Ki-67 decreased with the increase of Inotodiol concentration and exposure time (P〈0.05), in a close-dependent and time-dependent manner. The typical characteristics of the apoptosis of A549 cells treated with Inotodiol were observed, and the apoptotic rate of A549 cell at 48 h was the highest by TUNEL assay. Inotodiol arrested A549 cells in the S phase, and apoptotic peak was observed by flow cytometry. Immunocytochemistry indicated that the expression of Bcl-2 protein decreased, while the expression of p53 and Bax proteins increased in A549 cells treated with Inotodiol, compared with the control cells (P〈0.05). Conclusion: Inotodiol can inhibit proliferation and induce the apoptosis of A549 cells, and its molecular mechanism may be associated with the up-regulating expression of p53 and bax proteins and down- regulating expression of Bcl-2 protein, which arrested A549 cells in S phase.展开更多
A new class of RNA regulatory genes known as microRNAs(miRNAs)has been found to introduce a whole new layer of gene regulation in eukaryotes.The intensive studies of the past several years have demonstrated that miRNA...A new class of RNA regulatory genes known as microRNAs(miRNAs)has been found to introduce a whole new layer of gene regulation in eukaryotes.The intensive studies of the past several years have demonstrated that miRNAs are not only found intracellularly,but are also detectable outside cells,including in various body fluids(e.g.serum,plasma,saliva,urine and milk).This phenomenon raises questions about the biological function of such extracellular miRNAs.Substantial amounts of extracellular miRNAs are enclosed in small membranous vesicles(e.g.exosomes,shedding vesicles and apoptotic bodies)or packaged with RNA-binding proteins(e.g.high-density lipoprotein,Argonaute 2 and nucleophosmin 1).These miRNAs may function as secreted signaling molecules to influence the recipient cell phenotypes.Furthermore,secreted extracellular miRNAs may reflect molecular changes in the cells from which they are derived and can therefore potentially serve as diagnostic indicators of disease.Several studies also point to the potential application of siRNA/miRNA delivery as a new therapeutic strategy for treating diseases.In this review,we summarize what is known about the mechanism of miRNA secretion.In addition,we describe the pathophysiological roles of secreted miRNAs and their clinical potential as diagnostic biomarkers and therapeutic drugs.We believe that miRNA transfer between cells will have a significant impact on biological research in the coming years.展开更多
Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses ...Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment.展开更多
The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracte...The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the bio-logical behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.展开更多
Objective :To elucidate whether cell multiplication, apoptosis, glucose intake and p-Akt protein expression of bone Mesenchyreal Stem Cells(MSCs) of rats is influenced by a hypoxic environment ex vivo. Methods :Pa...Objective :To elucidate whether cell multiplication, apoptosis, glucose intake and p-Akt protein expression of bone Mesenchyreal Stem Cells(MSCs) of rats is influenced by a hypoxic environment ex vivo. Methods :Passage 3 of bone marrow MSCs taken from Wistar rats,were cultured in a culturing chamber with 94%N2,1%O2,5%CO2 at 37℃. At different hypoxia time points ,0,0.5, 1,4 and 8 h, glucose uptake was assayed by using radiation isotope ^3H-G, Apoptotic Rate(AR) and dead rate(DR) were analyzed by flow cytometry(FCM) after Annexin V/PI staining, cell multiplication(by MTr methods) and p-Akt protein by immunocytochemistry and western blot. Results :Assay for CD29^± ,CD44^± ,CD71^± ,CD34^-, Tn T^±(after 5-azacytidine agent inducing) and ALP^±(after bone differentiation agent inducing) suggested these bone-derived cells were MSCs. The ^3H-G intaking ratio (CPM/ flask value:157 ± 11,110 ± 11,107 ± 13,103 ± 10,100 ± 9 and 98 ± 10) of MSCs at different hypoxia time points, significantly decreased compared to that of normoxia(P 〈 0.01) and tended to descend slowly with hypoxia time duration, for which there was no statistical significance(P 〉 0.05). The AR(0.09 ± 2.03%,12.9 ± 1.72%,13.7 ± 2.26%,13.8 ± 3.01%,14.1 ± 2.78% and 14.7 ± 4.01% at 0,0.5,1,4 and 8 h,respectively,P 〈 0.01) and DR (0.04, ± 1.79% ,0.93 ± 1.85% ,3.11 ± 2.14% ,4.09 ± 2.36% ,4.72 ± 2.05% and 4.91 ± 3.72% at 0,0.5,1,4 and 8 h, respectively, P 〈 0.05) at different hypoxia time points significantly increased compared to those time in normoxia; The AR further went up with time (P 〈 0.05), however there was no statistical significance (P 〉 0.05) for the DR. Optical absorption value of MTr methods at different hypoxia time points significantly decreased compared to those with a corresponding normoxia time (P 〈 0.01) and degraded with time (in an hypoxic environment -P 〈 0.01). IOD of p-Akt protein of MSCs at different hypoxia time points significant展开更多
Hypocrellin A( HA), a photosensitive perylenequinone compound of Hypocrella bambusae, inhibited the proliferation of several tumor cell lines. Human cervical cancer cells, HeLa ceils, were used as a model to elucida...Hypocrellin A( HA), a photosensitive perylenequinone compound of Hypocrella bambusae, inhibited the proliferation of several tumor cell lines. Human cervical cancer cells, HeLa ceils, were used as a model to elucidate the molecular mechanisms of HA-induced tumor cell death. The results show that HA can induce the oligonucleosomal fragmentation of DNA in HeLa cells and also can increase the expression of apoptosis inducer Bax mRNA and that it decreases the expression of apoptosis suppressor, Bcl-2 mRNA, in mitochondria. It can be concluded from the data that HA-induced apoptosis is related to the balance between Bcl-2 and Bax gene expressions.展开更多
Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensi...Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 pg amyloid beta-peptide (25-35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25-35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellana baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.展开更多
Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated w...Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.展开更多
文摘Objective: To observe the proliferation inhibition, apoptosis, and cell proliferation cycle of human lung carcinoma cell line A549 treated with Inotodiol extracts from Inonotus obliquus and explore the possibility of Inotodiol extracts from Inonotus obliquus as a new tumor chemopreventive drug. Methods: Human lung cancer cell line A549 was treated with different concentrations of Inotodiol, the effects of Inotodiol on cell apoptosis, the expression of Ki-67, Bcl-2, Bax, and p53 and cell cycle were detected by TUNEL assay, immunohistochemistry, and flow cytometry assay respectively. Results: Inotodiol extracts had antiproliferation effect on human lung carcinoma cell line A549. The expression of Ki-67 decreased with the increase of Inotodiol concentration and exposure time (P〈0.05), in a close-dependent and time-dependent manner. The typical characteristics of the apoptosis of A549 cells treated with Inotodiol were observed, and the apoptotic rate of A549 cell at 48 h was the highest by TUNEL assay. Inotodiol arrested A549 cells in the S phase, and apoptotic peak was observed by flow cytometry. Immunocytochemistry indicated that the expression of Bcl-2 protein decreased, while the expression of p53 and Bax proteins increased in A549 cells treated with Inotodiol, compared with the control cells (P〈0.05). Conclusion: Inotodiol can inhibit proliferation and induce the apoptosis of A549 cells, and its molecular mechanism may be associated with the up-regulating expression of p53 and bax proteins and down- regulating expression of Bcl-2 protein, which arrested A549 cells in S phase.
基金by grants from the National Natural Science Foundation of China(Nos.90813035,81101330,81171661,30890044,30772484,30725008,30890032,31071232,31000323,90608010,and J1103512)the Natural Science Foundation of Jiangsu Province(No.BK2011013)the Fundamental Research Funds for the Central Universities(No.1107020839).
文摘A new class of RNA regulatory genes known as microRNAs(miRNAs)has been found to introduce a whole new layer of gene regulation in eukaryotes.The intensive studies of the past several years have demonstrated that miRNAs are not only found intracellularly,but are also detectable outside cells,including in various body fluids(e.g.serum,plasma,saliva,urine and milk).This phenomenon raises questions about the biological function of such extracellular miRNAs.Substantial amounts of extracellular miRNAs are enclosed in small membranous vesicles(e.g.exosomes,shedding vesicles and apoptotic bodies)or packaged with RNA-binding proteins(e.g.high-density lipoprotein,Argonaute 2 and nucleophosmin 1).These miRNAs may function as secreted signaling molecules to influence the recipient cell phenotypes.Furthermore,secreted extracellular miRNAs may reflect molecular changes in the cells from which they are derived and can therefore potentially serve as diagnostic indicators of disease.Several studies also point to the potential application of siRNA/miRNA delivery as a new therapeutic strategy for treating diseases.In this review,we summarize what is known about the mechanism of miRNA secretion.In addition,we describe the pathophysiological roles of secreted miRNAs and their clinical potential as diagnostic biomarkers and therapeutic drugs.We believe that miRNA transfer between cells will have a significant impact on biological research in the coming years.
文摘Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment.
基金supported by the National Natural Science Foundation of China(Grant Nos.30070835&30070294)National 863 Project.
文摘The study about apoptotic signal transductions has become a project to reveal the molecular mechanisms of apoptosis. Heat shock proteins (hsps), which play an important role in cell growth and apoptosis, have attracted great attentions. A lot of researches have showed there is a hsps superfamily including hsp90, hsp70, hsp60 and hsp27, etc., which regulates the bio-logical behaviors of cells, particularly apoptotic signal transduction in Fas pathway, JNK/SAPK pathway and caspases pathway at different levels, partly by the function of molecular chaperone.
基金Supported by The Guangdong Provincial Science and Technology Programs,China,No.2009A030301013the Scientific Funds of Guangzhou Medical College,China,No.2010A29+1 种基金National Natural Science Foundation of China,No.30700398 and 81172831Natural Science Foundation of Guangdong Province,No.10151008901000200
文摘AIM: To observe the synergistic effects of hyperthermia in oxaliplatin-induced cytotoxicity in human colon adenocarcinoma Lovo cells.
文摘Objective :To elucidate whether cell multiplication, apoptosis, glucose intake and p-Akt protein expression of bone Mesenchyreal Stem Cells(MSCs) of rats is influenced by a hypoxic environment ex vivo. Methods :Passage 3 of bone marrow MSCs taken from Wistar rats,were cultured in a culturing chamber with 94%N2,1%O2,5%CO2 at 37℃. At different hypoxia time points ,0,0.5, 1,4 and 8 h, glucose uptake was assayed by using radiation isotope ^3H-G, Apoptotic Rate(AR) and dead rate(DR) were analyzed by flow cytometry(FCM) after Annexin V/PI staining, cell multiplication(by MTr methods) and p-Akt protein by immunocytochemistry and western blot. Results :Assay for CD29^± ,CD44^± ,CD71^± ,CD34^-, Tn T^±(after 5-azacytidine agent inducing) and ALP^±(after bone differentiation agent inducing) suggested these bone-derived cells were MSCs. The ^3H-G intaking ratio (CPM/ flask value:157 ± 11,110 ± 11,107 ± 13,103 ± 10,100 ± 9 and 98 ± 10) of MSCs at different hypoxia time points, significantly decreased compared to that of normoxia(P 〈 0.01) and tended to descend slowly with hypoxia time duration, for which there was no statistical significance(P 〉 0.05). The AR(0.09 ± 2.03%,12.9 ± 1.72%,13.7 ± 2.26%,13.8 ± 3.01%,14.1 ± 2.78% and 14.7 ± 4.01% at 0,0.5,1,4 and 8 h,respectively,P 〈 0.01) and DR (0.04, ± 1.79% ,0.93 ± 1.85% ,3.11 ± 2.14% ,4.09 ± 2.36% ,4.72 ± 2.05% and 4.91 ± 3.72% at 0,0.5,1,4 and 8 h, respectively, P 〈 0.05) at different hypoxia time points significantly increased compared to those time in normoxia; The AR further went up with time (P 〈 0.05), however there was no statistical significance (P 〉 0.05) for the DR. Optical absorption value of MTr methods at different hypoxia time points significantly decreased compared to those with a corresponding normoxia time (P 〈 0.01) and degraded with time (in an hypoxic environment -P 〈 0.01). IOD of p-Akt protein of MSCs at different hypoxia time points significant
基金Supported by the Department of Science and Technology of Jilin Province(No.20020502).
文摘Hypocrellin A( HA), a photosensitive perylenequinone compound of Hypocrella bambusae, inhibited the proliferation of several tumor cell lines. Human cervical cancer cells, HeLa ceils, were used as a model to elucidate the molecular mechanisms of HA-induced tumor cell death. The results show that HA can induce the oligonucleosomal fragmentation of DNA in HeLa cells and also can increase the expression of apoptosis inducer Bax mRNA and that it decreases the expression of apoptosis suppressor, Bcl-2 mRNA, in mitochondria. It can be concluded from the data that HA-induced apoptosis is related to the balance between Bcl-2 and Bax gene expressions.
基金supported by grants from Hebei Provincial Science and Technology Bureau,No.08276101D-21
文摘Scutellaria baicalensis stem-leaf total flavonoid might attenuate learning/memory impairment and neuronal loss in rats induced by amyloid beta-peptide. This study aimed to explore the effects of Scutellaria baicalensis stem-leaf total flavonoid on amyloid beta-peptide-induced neuronal apoptosis and the expression of apoptosis-related proteins in the rat hippocampus. Male Wistar rats were given intragastric administration of Scutellaria baicalensis stem-leaf total flavonoid, 50 or 100 mg/kg, once per day. On day 8 after administration, 10 pg amyloid beta-peptide (25-35) was injected into the bilateral hippocampus of rats to induce neuronal apoptosis. On day 20, hippocampal tissue was harvested and probed with the terminal deoxyribonucleotidyl transferase-mediated biotin-16-dUTP nick-end labeling assay. Scutellaria baicalensis stem-leaf total flavonoid at 50 and 100 mg/kg reduced neuronal apoptosis induced by amyloid beta-peptide (25-35) in the rat hippocampus. Immunohistochemistry and western blot assay revealed that expression of the pro-apoptotic protein Bax, cytochrome c and caspase-3 was significantly diminished by 50 and 100 mg/kg Scutellaria baicalensis stem-leaf total flavonoid, while expression of the anti-apoptotic protein Bcl-2 was increased. Moreover, 100 mg/kg Scutellana baicalensis stem-leaf total flavonoid had a more dramatic effect than the lower dosage. These experimental findings indicate that Scutellaria baicalensis stem-leaf total flavonoid dose-dependently attenuates neuronal apoptosis induced by amyloid beta-peptide in the hippocampus, and it might mediate this by regulating the expression of Bax, cytochrome c, caspase-3 and Bcl-2.
基金supported by the National Natural Science Foundation of China(No.31101866 and 31302058)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China Postdoctoral Science Foundation funded project(2015M581874)Jiangsu Planned Projects for Postdoctoral Research Funds(1501072A)
文摘Objective To examine the role of Cd-induced reactive oxygen species(ROS) generation in the apoptosis of neuronal cells. Methods Neuronal cells(primary rat cerebral cortical neurons and PC12 cells) were incubated with or without Cd post-pretreatment with rapamycin(Rap) or N-acetyl-L-cysteine(NAC). Cell viability was determined by MTT assay, apoptosis was examined using flow cytometry and fluorescence microscopy, and the activation of phosphoinositide 3’-kinase/protein kinase B(Akt)/mammalian target of rapamycin(m TOR) and mitochondrial apoptotic pathways were measured by western blotting or immunofluorescence assays. Results Cd-induced activation of Akt/m TOR signaling, including Akt, m TOR, p70 S6 kinase(p70 S6K), and eukaryotic initiation factor 4E binding protein 1(4E-BP1). Rap, an m TOR inhibitor and NAC, a ROS scavenger, blocked Cd-induced activation of Akt/m TOR signaling and apoptosis of neuronal cells. Furthermore, NAC blocked the decrease of B-cell lymphoma 2/Bcl-2 associated X protein(Bcl-2/Bax) ratio, release of cytochrome c, cleavage of caspase-3 and poly(ADP-ribose) polymerase(PARP), and nuclear translocation of apoptosis-inducing factor(AIF) and endonuclease G(Endo G). Conclusion Cd-induced ROS generation activates Akt/m TOR and mitochondrial pathways, leading to apoptosis of neuronal cells. Our findings suggest that m TOR inhibitors or antioxidants have potential for preventing Cd-induced neurodegenerative diseases.