Porcine reproductive and respiratory syndrome(PRRS) is one of the most important diseases of swine industry. The causal agent, PRRS-virus(PRRSV), is able to evade the host immune response and survive in the organism c...Porcine reproductive and respiratory syndrome(PRRS) is one of the most important diseases of swine industry. The causal agent, PRRS-virus(PRRSV), is able to evade the host immune response and survive in the organism causing transient infections. Despite all scientific efforts, there are still some gaps in the knowledge of the pathogenesis of this disease. Antigen presenting cells(APCs), as initiators of the immune response, are located in the first line of defense against microorganisms, and are responsible for antigen recognition, processing and presentation. Dendritic cells(DCs) are the main type of APC involved in antigen presentation and they are susceptible to PRRSV infection. Thus, PRRSV replication in DCs may trigger off different mechanisms to impair the onset of a host effective immune response against the virus. On the one side, PRRSV may impair the basic functions of DCs by regulating the expression of major histocompatibility complex class Ⅱ and CD80/86. Other strategy followed by the virus is the induction of cell death of APCs by apoptosis, necrosis or both of them. The impairment and/or cell death ofAPCs could lead to a failure in the onset of an efficient immune response, as long as cells could not properly activate T cells. Future aspects to take into account are also discussed in this review.展开更多
Objective Since most reports on bystander effect have been only concerned with radiation-induced damage, the present paper aimed at disclosing whether low dose radiation could induce a stimulatory or beneficial bystan...Objective Since most reports on bystander effect have been only concerned with radiation-induced damage, the present paper aimed at disclosing whether low dose radiation could induce a stimulatory or beneficial bystander effect. Methods A co-culture system containing irradiated antigen presenting cells (J774A.1) and unirradiated T lymphocytes (EL-4) was established to observe the effect of J774A.1 cells exposed to both low and high doses of X-rays on the unirradiated EL-4 cells. Incorporation of 3H-TdR was used to assess the proliferation of the EL-4 cells, expression of CD80/86 and CD48 on J774A.1 cells was measured with immunohistochemistry and flow cytometry, respectively. NO release from J774A.1 cells was estimated with nitrate reduction method. Results Low dose-irradiated J774A.1 cells could stimulate the proliferation of the unirradiated EL-4 cells while the high dose-irradiated J774A.1 cells exerted an inhibitory effect on the proliferation of the unirradiated EL-4 cells. Preliminary mechanistic studies illustrated that the differential changes in CD48 expression and NO production by the irradiated J774A.1 cells after high and low dose radiation might be important factors underlying the differential bystander effect elicited by different doses of radiation. Conclusion Stimulatory bystander effect can be induced in immune cells by low dose radiation.展开更多
West Nile virus(WNV) is an emerging neurotropic flavivirus that has recently spread to America and Southern Europe via an enzootic/epizootic bird-mosquito-bird transmission cycle. The virus can occasionally infect hum...West Nile virus(WNV) is an emerging neurotropic flavivirus that has recently spread to America and Southern Europe via an enzootic/epizootic bird-mosquito-bird transmission cycle. The virus can occasionally infect humans through mosquito bites, and man-to-man transmission has also been reported via infected blood or organ donation. In the human host, WNV causes asymptomatic infection in about 70%-80% of cases, while < 1% of clinical cases progress to severe neuroinvasive disease; long-term neurological sequelae are common in more than 50% of these severe cases. Thepathogenesis of the neuroinvasive form of WNV infection remains incompletely understood, and risk factors for developing severe clinical illness are largely unknown. The innate immune response plays a major role in the control of WNV replication, which is supported by the fact that the virus has developed numerous mechanisms to escape the control of antiviral interferons. However, exaggerated inflammatory responses lead to pathology, mainly involving the central nervous system. This brief review presents the salient features of innate host responses, WNV immunoevasion strategies, and WNV-induced immunopathology.展开更多
基金Supported by The Spanish Ministry of Education and Science,No.AGL2009-12438/GAN
文摘Porcine reproductive and respiratory syndrome(PRRS) is one of the most important diseases of swine industry. The causal agent, PRRS-virus(PRRSV), is able to evade the host immune response and survive in the organism causing transient infections. Despite all scientific efforts, there are still some gaps in the knowledge of the pathogenesis of this disease. Antigen presenting cells(APCs), as initiators of the immune response, are located in the first line of defense against microorganisms, and are responsible for antigen recognition, processing and presentation. Dendritic cells(DCs) are the main type of APC involved in antigen presentation and they are susceptible to PRRSV infection. Thus, PRRSV replication in DCs may trigger off different mechanisms to impair the onset of a host effective immune response against the virus. On the one side, PRRSV may impair the basic functions of DCs by regulating the expression of major histocompatibility complex class Ⅱ and CD80/86. Other strategy followed by the virus is the induction of cell death of APCs by apoptosis, necrosis or both of them. The impairment and/or cell death ofAPCs could lead to a failure in the onset of an efficient immune response, as long as cells could not properly activate T cells. Future aspects to take into account are also discussed in this review.
基金This work was supported by grants from NSFC (No. 39270207, No. 39570188).
文摘Objective Since most reports on bystander effect have been only concerned with radiation-induced damage, the present paper aimed at disclosing whether low dose radiation could induce a stimulatory or beneficial bystander effect. Methods A co-culture system containing irradiated antigen presenting cells (J774A.1) and unirradiated T lymphocytes (EL-4) was established to observe the effect of J774A.1 cells exposed to both low and high doses of X-rays on the unirradiated EL-4 cells. Incorporation of 3H-TdR was used to assess the proliferation of the EL-4 cells, expression of CD80/86 and CD48 on J774A.1 cells was measured with immunohistochemistry and flow cytometry, respectively. NO release from J774A.1 cells was estimated with nitrate reduction method. Results Low dose-irradiated J774A.1 cells could stimulate the proliferation of the unirradiated EL-4 cells while the high dose-irradiated J774A.1 cells exerted an inhibitory effect on the proliferation of the unirradiated EL-4 cells. Preliminary mechanistic studies illustrated that the differential changes in CD48 expression and NO production by the irradiated J774A.1 cells after high and low dose radiation might be important factors underlying the differential bystander effect elicited by different doses of radiation. Conclusion Stimulatory bystander effect can be induced in immune cells by low dose radiation.
基金Supported by RFO of University of Bologna,the grant"Fondi Finalizzati Lab P3"from Regione Emilia-Romagnathe grant"Ricerca Finalizzata RF-2009-1539631"from the Italian Ministry of Health
文摘West Nile virus(WNV) is an emerging neurotropic flavivirus that has recently spread to America and Southern Europe via an enzootic/epizootic bird-mosquito-bird transmission cycle. The virus can occasionally infect humans through mosquito bites, and man-to-man transmission has also been reported via infected blood or organ donation. In the human host, WNV causes asymptomatic infection in about 70%-80% of cases, while < 1% of clinical cases progress to severe neuroinvasive disease; long-term neurological sequelae are common in more than 50% of these severe cases. Thepathogenesis of the neuroinvasive form of WNV infection remains incompletely understood, and risk factors for developing severe clinical illness are largely unknown. The innate immune response plays a major role in the control of WNV replication, which is supported by the fact that the virus has developed numerous mechanisms to escape the control of antiviral interferons. However, exaggerated inflammatory responses lead to pathology, mainly involving the central nervous system. This brief review presents the salient features of innate host responses, WNV immunoevasion strategies, and WNV-induced immunopathology.