The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffr...The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.展开更多
CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage ...CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.展开更多
Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperatu...Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP.展开更多
With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a pro...With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2.展开更多
The interface is crucial for perovskite solar cells(PSCs).However,voids at interfaces induced by the trapped hygroscopic dimethyl sulfoxide(DMSO)can reduce charge extraction and accelerate the film degradation,serious...The interface is crucial for perovskite solar cells(PSCs).However,voids at interfaces induced by the trapped hygroscopic dimethyl sulfoxide(DMSO)can reduce charge extraction and accelerate the film degradation,seriously damaging the efficiency and stability.In this work,4,4’-dinonyl-2,2’-dipyridine(DN-DP),a Lewis base with long alkyl chains is introduced to solve this problem.Theoretical calculated and experimental results confirm that the dipyridyl group on DN-DP can more strongly coordinate with Pb^(2+)than that of the S=O group on DMSO.The strong coordination effect plays a crucial role in removing the DMSO-based adduct and reducing the formation of voids.Due to the electron-donating properties of pyridine,the existence of DN-DP in the perovskite film can passivate the defects and optimize the energy level alignment of the perovskite configuration.The open-circuit voltage(VOC)of the DN-DP-based PSC is improved from 1.107 V(control device)to 1.153 V,giving rise to a power conversion efficiency(PCE)of24.02%.Furthermore,benefiting from the moisture resistance stemming from the hydrophobic nonyl group,the PCE retains 90.4%of the initial performance after 1000 h of storage in the ambient condition.展开更多
基金Project supported by National Natural Science Foundation of China(20976120)Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘The nano-crystalline Cu-Ce-Zr-O composite oxides were successfully prepared by the supercritical anti-solvent (SAS) process. The physicochemical properties and catalytic performances were investigated by X-ray diffraction (XRD), Raman spectroscopy, H2 temperature-programmed reduction (H2 -TPR), oxygen storage capacity (OSC) measurement and catalytic activity evaluation. It was found that Cu2+ ions incorporated into CeO2 -ZrO2 lattice to form Cu-Ce-Zr-O solid solution associated with the formation of oxygen vacancies. The Cu-Ce-Zr-O catalysts prepared via the SAS process with the Cu content 2.63 mol.% showed the highest OSC index of 636.9 μmol/g. Compared with the samples prepared by impregnation method, Cu doping using SAS process could improve the dispersion of Cu2+ in the composite oxide, enhance the interaction between Cu2+ and CeO2-ZrO2 , improve the reducibility of catalyst, and thus improve the OSC performance and increase the catalytic activity for CO oxidation at low temperature.
基金National Natural Science Foundation of China(20976120)the Natural Science Foundation of Tianjin(09JCYBJC06200)
文摘CeO2-ZrO2-Al2O3 ternary oxides were successfully prepared by a green route of supercritical anti-solvent precipitation with supercritical CO2 as anti-solvent and methanol as solvent. The structures and oxygen storage capacities of these ternary oxides were characterized by XRD, Raman spectra and oxygen storage capacity measurements. It was found that Al3+ and Zr4+ inserted into CeO2 lattice, forming CeO2-ZrO2-Al2O3 solid solution. The concentration of aluminium isopropoxide in the solution affected the concentration of oxygen vacancy and the distortion of oxygen sublattice which were responsible for the oxygen storage capacity. The rapidest oxygen uptake/release rate and maximum total oxygen storage capacity (122.0 mmolO2/molCeO2) were obtained with the aluminitun isopropoxide concentration at 0.2 wt.% in the solution.
文摘针对钛白粉工业的废酸,选用乙醇(Et OH)为溶析剂,研究了溶析结晶法脱除钛白废酸中硫酸亚铁盐的可行性。在5-30℃,采用激光检测法系统地测定了七水硫酸亚铁在水、硫酸溶液和醇酸混合水溶液中的溶解度,考察了溶析剂浓度、温度、硫酸浓度等因素对硫酸亚铁盐溶解度的影响。在此基础上,以钛白废酸(含硫酸20%(wt)、七水硫酸亚铁8%(wt)为对象,在搅拌结晶器中考察了溶析剂加入量、加入方式、搅拌速度、晶种和熟化时间等工艺操作条件对硫酸亚铁脱除率的影响。结果表明,以乙醇为溶析剂,可在常温下显著降低硫酸亚铁在硫酸溶液中的溶解度。在醇酸混合水溶液中,硫酸亚铁盐的溶解度主要受溶析剂浓度影响,与硫酸浓度无关。控制适宜的搅拌速度、溶析剂加入速度和熟化时间有助于提高硫酸亚铁的脱除率。适宜的溶析结晶条件为:温度为5-10℃,溶析剂与废酸的质量比1:1,溶析剂加料速度6 m L·min-1、熟化时间60 min。在此条件下,七水硫酸亚铁的脱除率可达到87%-91%。
基金Supported by the National High Technology Research and Development Program of China (2007AA 10Z350) and the National Natural Science Foundation of China (20976103).
文摘Vitamin D3 (VD3) proliposomes (VDP), consisted of hydrogenated phosphatidycholine (HPC) and VD3, were prepared using supercritical anti-solvent technology (SAS). The effects of operation conditions (temperature, pressure and components) on the VD3 loading in VDP were studied. At the optimum conditions of pressure of 8.0 MPa, temperature of 45 ℃, and the mass ratio of 15.0% between VD3 and HPC, the VD3 loading reached 12.89%. VD3 liposomes (VDL) were obtained by hydrating VDP and the entrapment efficiency of VD3 in VDL reached 98.5%. The morphology and structure of VDP and VDL were characterized by SEM (scanning electron micro-scope), TEM (transmission electron microscope) and XRD (X-ray diffractometer). The structure of VD3 nanoparti-cles in HPC matrix was formed. The size of VDL with an average diameter of about 1μm was determined by dynamic light scattering instrument (DLS). The results indicated that VDP can be made by SAS and VDL with high entrapment efficiency can be formed easily via the hydration of VDP.
基金supported by the National Key Research Program of China (2016YFA0202403)National Nature Science Foundation of China (61674098)+1 种基金the 111 Project (B1404)Chinese National 1000-Talent-Plan program (Grant No. 111001034)
文摘With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2.
基金supported by the National Key R&D Program of China(2019YFB1503200)the National Natural Science Foundation of China(52002105)+7 种基金the Key Research and Development Plan Project of Anhui Province(2022H11020014)the West Light Foundation of the Chinese Academy of Sciences(XAB2020YW11)the Collaborative Innovation Program of Hefei Science Center,CAS(2022HSC-CIP006)the Fundamental Research Funds for the Central Universities(JZ2021HGTB0105)the Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(YZJJ201902,YZJJZX202018)the Natural Science Foundation of Hebei Province(F2021208014)the Science and Technology Project of Hebei Education Department(QN2021063)the Science and Technology Research Project for the Colleges and Universities in Hebei Province(QN2022034)。
文摘The interface is crucial for perovskite solar cells(PSCs).However,voids at interfaces induced by the trapped hygroscopic dimethyl sulfoxide(DMSO)can reduce charge extraction and accelerate the film degradation,seriously damaging the efficiency and stability.In this work,4,4’-dinonyl-2,2’-dipyridine(DN-DP),a Lewis base with long alkyl chains is introduced to solve this problem.Theoretical calculated and experimental results confirm that the dipyridyl group on DN-DP can more strongly coordinate with Pb^(2+)than that of the S=O group on DMSO.The strong coordination effect plays a crucial role in removing the DMSO-based adduct and reducing the formation of voids.Due to the electron-donating properties of pyridine,the existence of DN-DP in the perovskite film can passivate the defects and optimize the energy level alignment of the perovskite configuration.The open-circuit voltage(VOC)of the DN-DP-based PSC is improved from 1.107 V(control device)to 1.153 V,giving rise to a power conversion efficiency(PCE)of24.02%.Furthermore,benefiting from the moisture resistance stemming from the hydrophobic nonyl group,the PCE retains 90.4%of the initial performance after 1000 h of storage in the ambient condition.