期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
基于模拟退火算法的知识获取方法的研究 被引量:8
1
作者 张雪江 朱向阳 +1 位作者 钟秉林 黄仁 《控制与决策》 EI CSCD 北大核心 1997年第4期327-331,共5页
从优化角度提出了从事例中获取知识的机器学习方法。该方法利用模拟退火算法,按照预定的优化目标,从事例中生成最优的产生式规则,给出其算法,并以旋转机械故障诊断知识获取为例,阐述了基于模拟退火算法的知识获取机制及其实现方法。
关键词 模拟退火算法 知识获取 机器学习 诊断专家系统
下载PDF
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
2
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee Sung Hyuk Park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression annealing machine learning Data augmentation
下载PDF
Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms 被引量:5
3
作者 WANG Binggang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期537-546,共10页
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul... As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm. 展开更多
关键词 mixed-model production system SEQUENCING parallel machine BUFFERS multi-objective genetic algorithm multi-objective simulated annealing algorithm
下载PDF
Fine-Grained Resource Provisioning and Task Scheduling for Heterogeneous Applications in Distributed Green Clouds 被引量:5
4
作者 Haitao Yuan Meng Chu Zhou +1 位作者 Qing Liu Abdullah Abusorrah 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1380-1393,共14页
An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud(DGC)systems for low response time and high cost-effectiveness in recent years... An increasing number of enterprises have adopted cloud computing to manage their important business applications in distributed green cloud(DGC)systems for low response time and high cost-effectiveness in recent years.Task scheduling and resource allocation in DGCs have gained more attention in both academia and industry as they are costly to manage because of high energy consumption.Many factors in DGCs,e.g.,prices of power grid,and the amount of green energy express strong spatial variations.The dramatic increase of arriving tasks brings a big challenge to minimize the energy cost of a DGC provider in a market where above factors all possess spatial variations.This work adopts a G/G/1 queuing system to analyze the performance of servers in DGCs.Based on it,a single-objective constrained optimization problem is formulated and solved by a proposed simulated-annealing-based bees algorithm(SBA)to find SBA can minimize the energy cost of a DGC provider by optimally allocating tasks of heterogeneous applications among multiple DGCs,and specifying the running speed of each server and the number of powered-on servers in each GC while strictly meeting response time limits of tasks of all applications.Realistic databased experimental results prove that SBA achieves lower energy cost than several benchmark scheduling methods do. 展开更多
关键词 Bees algorithm data centers distributed green cloud(DGC) energy optimization intelligent optimization simulated annealing task scheduling machine learning
下载PDF
Investigation of factors affecting rural drinking water consumption using intelligent hybrid models
5
作者 Alireza Mehrabani Bashar Hamed Nozari +2 位作者 Safar Marofi Mohamad Mohamadi Ahad Ahadiiman 《Water Science and Engineering》 EI CAS CSCD 2023年第2期175-183,共9页
Identifying the factors affecting drinking water consumption is essential to the rational management of water resources and effective environment protection. In this study, the effects of the factors on rural drinking... Identifying the factors affecting drinking water consumption is essential to the rational management of water resources and effective environment protection. In this study, the effects of the factors on rural drinking water demand were studied using the adaptive neuro-fuzzy inference system (ANFIS) and hybrid models, such as the ANFIS-genetic algorithm (GA), ANFIS-particle swarm optimization (PSO), and support vector machine (SVM)-simulated annealing (SA). The rural areas of Hamadan Province in Iran were selected for the case study. Five drinking water consumption factors were selected for the assessment according to the literature, data availability, and the characteristics of the study area (such as precipitation, relative humidity, temperature, the number of subscribers, and water price). The results showed that the standard errors of ANFIS, ANFIS-GA, ANFIS-PSO, and SVM-SA were 0.669, 0.619, 0.705, and 0.578, respectively. Therefore, the hybrid model SVM-SA outperformed other models. The sensitivity analysis showed that of the parameters affecting drinking water consumption, the number of subscribers significantly affected the water consumption rate, while the average temperature was the least significant factor. Water price was a factor that could be easily controlled, but it was always one of the least effective parameters due to the low water fee. 展开更多
关键词 ANFIS Water distribution network Simulated annealing algorithm Support vector machine Adaptive neuro-fuzzy inference system
下载PDF
Simulated Annealing with Deep Learning Based Tongue Image Analysis for Heart Disease Diagnosis
6
作者 S.Sivasubramaniam S.P.Balamurugan 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期111-126,共16页
Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine,for example,traditional Chinese medicine(TCM),Japanese traditional herbal me... Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine,for example,traditional Chinese medicine(TCM),Japanese traditional herbal medicine,and traditional Korean medicine(TKM).The diagnosis procedure is mainly based on the expert’s knowledge depending upon the visual inspec-tion comprising color,substance,coating,form,and motion of the tongue.But conventional tongue diagnosis has limitations since the procedure is inconsistent and subjective.Therefore,computer-aided tongue analyses have a greater potential to present objective and more consistent health assess-ments.This manuscript introduces a novel Simulated Annealing with Transfer Learning based Tongue Image Analysis for Disease Diagnosis(SADTL-TIADD)model.The presented SADTL-TIADD model initially pre-processes the tongue image to improve the quality.Next,the presented SADTL-TIADD technique employed an EfficientNet-based feature extractor to generate useful feature vectors.In turn,the SA with the ELM model enhances classification efficiency for disease detection and classification.The design of SA-based parameter tuning for heart disease diagnosis shows the novelty of the work.A wide-ranging set of simulations was performed to ensure the improved performance of the SADTL-TIADD algorithm.The experimental outcomes highlighted the superior of the presented SADTL-TIADD system over the compared methods with maximum accuracy of 99.30%. 展开更多
关键词 Tongue color images disease diagnosis transfer learning simulated annealing machine learning
下载PDF
Improving Performance of Recurrent Neural Networks Using Simulated Annealing for Vertical Wind Speed Estimation
7
作者 Shafiqur Rehman HilalH.Nuha +2 位作者 Ali Al Shaikhi Satria Akbar Mohamed Mohandes 《Energy Engineering》 EI 2023年第4期775-789,共15页
An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters ... An accurate vertical wind speed(WS)data estimation is required to determine the potential for wind farm installation.In general,the vertical extrapolation of WS at different heights must consider different parameters fromdifferent locations,such as wind shear coefficient,roughness length,and atmospheric conditions.The novelty presented in this article is the introduction of two steps optimization for the Recurrent Neural Networks(RNN)model to estimate WS at different heights using measurements from lower heights.The first optimization of the RNN is performed to minimize a differentiable cost function,namely,mean squared error(MSE),using the Broyden-Fletcher-Goldfarb-Shanno algorithm.Secondly,the RNN is optimized to reduce a non-differentiable cost function using simulated annealing(RNN-SA),namely mean absolute error(MAE).Estimation ofWS vertically at 50 m height is done by training RNN-SA with the actualWS data a 10–40 m heights.The estimatedWS at height of 50 m and the measured WS at 10–40 heights are further used to train RNN-SA to obtain WS at 60 m height.This procedure is repeated continuously until theWS is estimated at a height of 180 m.The RNN-SA performance is compared with the standard RNN,Multilayer Perceptron(MLP),Support Vector Machine(SVM),and state of the art methods like convolutional neural networks(CNN)and long short-term memory(LSTM)networks to extrapolate theWS vertically.The estimated values are also compared with realWS dataset acquired using LiDAR and tested using four error metrics namely,mean squared error(MSE),mean absolute percentage error(MAPE),mean bias error(MBE),and coefficient of determination(R2).The numerical experimental results show that the MSE values between the estimated and actualWS at 180mheight for the RNN-SA,RNN,MLP,and SVM methods are found to be 2.09,2.12,2.37,and 2.63,respectively. 展开更多
关键词 Vertical wind speed estimation recurrent neural networks simulated annealing multilayer perceptron support vector machine
下载PDF
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
8
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
下载PDF
Forecasting of wind velocity:An improved SVM algorithm combined with simulated annealing 被引量:2
9
作者 刘金朋 牛东晓 +1 位作者 张宏运 王官庆 《Journal of Central South University》 SCIE EI CAS 2013年第2期451-456,共6页
Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to th... Accurate forecasting of wind velocity can improve the economic dispatch and safe operation of the power system. Support vector machine (SVM) has been proved to be an efficient approach for forecasting. According to the analysis with support vector machine method, the drawback of determining the parameters only by experts' experience should be improved. After a detailed description of the methodology of SVM and simulated annealing, an improved algorithm was proposed for the automatic optimization of parameters using SVM method. An example has proved that the proposed method can efficiently select the parameters of the SVM method. And by optimizing the parameters, the forecasting accuracy of the max wind velocity increases by 34.45%, which indicates that the new SASVM model improves the forecasting accuracy. 展开更多
关键词 wind velocity forecasting improved algorithm simulated annealing support vector machine
下载PDF
全浸式铜导体中拉连续退火机组性能与设计 被引量:1
10
作者 王勇 吕杰 李安 《电线电缆》 2006年第5期42-43,46,共3页
介绍了17模铜导体中拉连续退火机组的机械及电气控制原理和设计方案。重点论述了在连续退火机组设备上所采用的新材料,新工艺,新的设计思路,突出设备的优越性和实用性。
关键词 全浸式铜导体中拉机组 退火机 性能 设计
下载PDF
基于PLC的退火机控制系统的设计 被引量:1
11
作者 钟剑贞 李文勇 +1 位作者 胡勇 张稀琦 《机床与液压》 北大核心 2014年第13期86-89,共4页
针对传统的退火机控制系统操作方式复杂、生产效率低的问题,提出了一种基于PLC(可编程逻辑控制器)、人机界面和伺服控制技术的控制系统。分析了伺服控制技术在退火机的控制系统的应用并进行了控制系统硬件、软件的设计。该控制系统程序... 针对传统的退火机控制系统操作方式复杂、生产效率低的问题,提出了一种基于PLC(可编程逻辑控制器)、人机界面和伺服控制技术的控制系统。分析了伺服控制技术在退火机的控制系统的应用并进行了控制系统硬件、软件的设计。该控制系统程序主要由复位程序、手动控制程序、自动控制程序和故障报警程序组成。并对系统进行了实际运行测试,结果表明:系统操作简便、运行稳定,自动化程度高,效率高等优点。 展开更多
关键词 PLC 伺服系统 退火机 FPWIN-GR
下载PDF
Quantum annealing for semi-supervised learning
12
作者 Yu-Lin Zheng Wen Zhang +1 位作者 Cheng Zhou Wei Geng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期74-80,共7页
Recent advances in quantum technology have led to the development and the manufacturing of programmable quantum annealers that promise to solve certain combinatorial optimization problems faster than their classical c... Recent advances in quantum technology have led to the development and the manufacturing of programmable quantum annealers that promise to solve certain combinatorial optimization problems faster than their classical counterparts.Semi-supervised learning is a machine learning technique that makes use of both labeled and unlabeled data for training,which enables a good classifier with only a small amount of labeled data.In this paper,we propose and theoretically analyze a graph-based semi-supervised learning method with the aid of the quantum annealing technique,which efficiently utilizes the quantum resources while maintaining good accuracy.We illustrate two classification examples,suggesting the feasibility of this method even with a small portion(30%) of labeled data involved. 展开更多
关键词 quantum annealing semi-supervised learning machine learning
下载PDF
前置式在线中间退火工艺及其拉丝机
13
作者 韩富生 《电线电缆》 2012年第5期41-44,共4页
指出了用成品热处理代替中间热处理的诸多弊端,推出了前置式在线中间退火工艺和前置式中间退火拉丝机,介绍了前置式中间退火拉丝机的机械结构,及其产品质量提高、设备简单可靠、成本低廉等诸多优越性,此工艺及其拉丝机特别适用于微细线... 指出了用成品热处理代替中间热处理的诸多弊端,推出了前置式在线中间退火工艺和前置式中间退火拉丝机,介绍了前置式中间退火拉丝机的机械结构,及其产品质量提高、设备简单可靠、成本低廉等诸多优越性,此工艺及其拉丝机特别适用于微细线和铝及其合金在线退火。 展开更多
关键词 有色金属 连续退火 工艺 拉丝机 微细线
下载PDF
采用支持向量机和模拟退火算法的中长期负荷预测方法 被引量:79
14
作者 李瑾 刘金朋 王建军 《中国电机工程学报》 EI CSCD 北大核心 2011年第16期63-66,共4页
准确的中长期负荷预测能够提高电力系统的经济效益和社会效益。分析了支持向量机(support vector machine,SVM)模型,并针对利用支持向量机进行负荷预测需要人为地确定相关参数的不足,提出了利用支持向量机进行中长期预测的新方法。该方... 准确的中长期负荷预测能够提高电力系统的经济效益和社会效益。分析了支持向量机(support vector machine,SVM)模型,并针对利用支持向量机进行负荷预测需要人为地确定相关参数的不足,提出了利用支持向量机进行中长期预测的新方法。该方法利用模拟退火(simulated annealing,SA)算法自动优化参数。实例验证结果表明,所提出的方法可以有效地选取支持向量机模型的参数,降低支持向量机的建模误差和测试误差,该方法与利用默认参数支持向量机进行预测的方法相比,有效地提高了负荷预测精度。 展开更多
关键词 电力系统 中长期负荷预测 模拟退火 支持向量机
下载PDF
基于改进秃鹰搜索算法的同步优化特征选择 被引量:37
15
作者 贾鹤鸣 姜子超 李瑶 《控制与决策》 EI CSCD 北大核心 2022年第2期445-454,共10页
针对传统支持向量机在封装式特征选择中分类效果差、子集选取冗余、计算性能易受核函数参数影响的不足,利用元启发式优化算法对其进行同步优化.首先利用莱维飞行策略和模拟退火机制对秃鹰搜索算法的局部搜索能力与勘探利用解空间能力进... 针对传统支持向量机在封装式特征选择中分类效果差、子集选取冗余、计算性能易受核函数参数影响的不足,利用元启发式优化算法对其进行同步优化.首先利用莱维飞行策略和模拟退火机制对秃鹰搜索算法的局部搜索能力与勘探利用解空间能力进行改进,通过标准函数的测试结果验证其改进的有效性;其次将支持向量机核函数参数作为待优化目标,利用改进后的算法在封装式特征选择模型中搜寻最优核函数参数,同时获得相对应的最优特征子集;最后对UCI存储库的12个标准数据集进行特征选择仿真实验,在平均分类准确率、所选特征个数及适应度值上进行综合评估分析.实验结果表明,所提算法可有效降低特征维度,能够更准确地实现数据分类,在空间搜索与求解精度方面较原算法及其他非线性最优化算法表现优秀,具有一定的工程应用价值. 展开更多
关键词 秃鹰搜索优化 莱维飞行 模拟退火 支持向量机 封装式特征选择
原文传递
一种用于可见-近红外光谱特征波长选择的新方法 被引量:23
16
作者 陈孝敬 吴迪 +2 位作者 虞佳佳 何勇 刘守 《光学学报》 EI CAS CSCD 北大核心 2008年第11期2153-2158,共6页
提出了一种基于模拟退火(SA)算法和最小二乘法支持向量机(LS-SVM)选择可见-近红外光谱特征波长的新方法(SA-LS-SVM)。该方法用LS-SVM作为识别器,用识别率作为SA的目标函数,提取合适的特征波长数以及对应的特征波长。3种不同品牌的润滑... 提出了一种基于模拟退火(SA)算法和最小二乘法支持向量机(LS-SVM)选择可见-近红外光谱特征波长的新方法(SA-LS-SVM)。该方法用LS-SVM作为识别器,用识别率作为SA的目标函数,提取合适的特征波长数以及对应的特征波长。3种不同品牌的润滑油可见-近红外光谱的特征波长分别用SA-LS-SVM,主成分回归分析(PCA)和偏最小二乘法(PLS)进行处理,提取特征波长或主成分,然后结合反向传播人工神经网络(BP-ANN)对各种处理方法进行识别预测。结果发现,SA-LS-SVM只需从751个数据光谱中提取4个特征波长,就可以使三种品牌润滑油的识别率达到了100%,而其他所有的方法发现预测率都达不到100%,由此验证了SA-LS-SVM的优越性。实验结果表明,SA-LS-SVM不仅能有效地减少建模的变量数,而且可以提高预测精度。 展开更多
关键词 可见-近红外光谱分析 识别模型 模拟退火算法 最小二乘法支持向量机
原文传递
随机神经网络发展现状综述 被引量:8
17
作者 丛爽 王怡雯 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第6期975-980,985,共7页
随机神经网络 (RNN)在人工神经网络中是一类比较独特、出现较晚的神经网络 ,它的网络结构、学习算法、状态更新规则以及应用等方面都因此具有自身的特点 .作为仿生神经元数学模型 ,随机神经网络在联想记忆、图像处理、组合优化问题上都... 随机神经网络 (RNN)在人工神经网络中是一类比较独特、出现较晚的神经网络 ,它的网络结构、学习算法、状态更新规则以及应用等方面都因此具有自身的特点 .作为仿生神经元数学模型 ,随机神经网络在联想记忆、图像处理、组合优化问题上都显示出较强的优势 .在阐述随机神经网络发展现状、网络特性以及广泛应用的同时 ,专门将RNN分别与Hopfield网络、模拟退火算法和Boltzmann机在组合优化问题上的应用进行了分析对比 ,指出RNN是解决旅行商 (TSP) 展开更多
关键词 随机神经网络(RNN) HOPFIELD网络 模拟退火算法 BOLTZMANN机 组合优化问题
下载PDF
基于混合策略的麻雀搜索算法改进及应用 被引量:11
18
作者 宋立钦 陈文杰 +2 位作者 陈伟海 林岩 孙先涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期2187-2199,共13页
针对麻雀搜索算法(SSA)搜索精度不高、全局搜索能力不强、收敛速度慢和易于陷入局部最优等问题,提出了一种基于混合策略的麻雀搜索算法(HSSA)。采用改进的Circle混沌映射初始化种群,提高种群多样性;结合樽海鞘群算法改进发现者的搜索公... 针对麻雀搜索算法(SSA)搜索精度不高、全局搜索能力不强、收敛速度慢和易于陷入局部最优等问题,提出了一种基于混合策略的麻雀搜索算法(HSSA)。采用改进的Circle混沌映射初始化种群,提高种群多样性;结合樽海鞘群算法改进发现者的搜索公式,提高算法迭代前期的全局搜索能力和范围;在加入者的搜索公式中引入自适应步长因子,提高算法的局部搜索能力和收敛速度;通过镜像选择机制,提升每次迭代后的个体质量,提高算法的寻优精度和寻优速度;在位置更新处加入模拟退火机制,帮助算法跳出局部最优。利用8种测试函数进行测试,结果表明,改进算法比SSA有更好的寻优性能。将改进前后算法与极限学习机结合进行实验,人体表面肌电信号数据集的分类预测精度从80.17%提高到90.87%,证实了改进算法的可行性和良好性能。 展开更多
关键词 麻雀搜索算法 Circle混沌映射 樽海鞘群算法 镜像选择 自适应步长因子 模拟退火机制 极限学习机
下载PDF
山岭隧道围岩参数智能反演及稳定性分析 被引量:15
19
作者 王述红 董福瑞 +2 位作者 朱宝强 刘欢 张泽 《应用基础与工程科学学报》 EI CSCD 北大核心 2021年第5期1171-1185,共15页
隧道围岩参数的确定直接关系到围岩稳定性评价的准确性,为确保围岩力学参数取值的合理性,提出一种新的围岩参数智能反演模型.利用模拟退火算法(SA)的退火策略对遗传算法(GA)进行优化,组成GASA智能模型,以此对极限学习机(ELM)的初始权值... 隧道围岩参数的确定直接关系到围岩稳定性评价的准确性,为确保围岩力学参数取值的合理性,提出一种新的围岩参数智能反演模型.利用模拟退火算法(SA)的退火策略对遗传算法(GA)进行优化,组成GASA智能模型,以此对极限学习机(ELM)的初始权值和阈值进行优化;将GASA-ELM模型应用于重庆市兴隆隧道(ZK38+020)~(ZK38+010)断面围岩力学参数反演中,基于现场实测变形反演得出围岩力学参数,并输入到ANSYS中计算得到位移正算值,与已有模型进行对比;最后利用计算结果对ZK38+010断面围岩稳定性进行分析,预测了该断面的变形量和变形速率.结果表明:模型反演所得参数在ANSYS中正算结果与现场实测值相对误差均在5.4%以内,均优于已有研究中的GA-BP及BP模型,表明了反演结果合理可靠;而ZK38+010断面将在开挖后46d左右进入稳定阶段.研究成果可为山岭隧道围岩力学参数反演提供参考,具有理论意义和工程实用价值. 展开更多
关键词 隧道工程 围岩参数反演 遗传退火算法(GASA) 极限学习机(ELM) 围岩稳定性
原文传递
滚动轴承多工况故障的特征自动选择核极限学习机智能识别方法 被引量:13
20
作者 胡爱军 张军华 +1 位作者 刘随贤 许莎 《振动与冲击》 EI CSCD 北大核心 2020年第23期182-189,共8页
滚动轴承的智能诊断存在许多不足,特别是对复杂工况下的识别存在特征提取不足及诊断精度低等问题。针对故障类型不同、故障程度不同和负荷不同的多工况条件下滚动轴承故障诊断,提出了基于多特征自动选择的核极限学习机智能识别方法。分... 滚动轴承的智能诊断存在许多不足,特别是对复杂工况下的识别存在特征提取不足及诊断精度低等问题。针对故障类型不同、故障程度不同和负荷不同的多工况条件下滚动轴承故障诊断,提出了基于多特征自动选择的核极限学习机智能识别方法。分别从时域、频域、时频域提取有效故障特征,采用拉普拉斯分数(Laplace Score,LS)根据每个特征的重要性自动选择敏感特征,旨在消除一些冗余信息,提高计算效率。采用模拟退火粒子群优化的核极限学习机(Simulated Annealing Particle Swarm Optimization,Kernel Extreme Learning Machine,SAPSO-KELM),实现滚动轴承多故障状态识别。将该方法应用于滚动轴承变负荷故障识别,与其他识别方法的比较结果表明,该方法具有较高的识别精度和较快的分类速度。 展开更多
关键词 滚动轴承 故障诊断 拉普拉斯分数(LS) 模拟退火粒子群算法(SAPSO-KELM) 核极限学习机
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部