Although global navigation satellite systems(GNSS)have been routinely applied to determine attitudes,there exists no literature on determining angular velocity and/or angular acceleration from GNSS.Motivated by the in...Although global navigation satellite systems(GNSS)have been routinely applied to determine attitudes,there exists no literature on determining angular velocity and/or angular acceleration from GNSS.Motivated by the invention of computerized accelerometers of the correspondence author and following the success of accurately recovering translational velocity and acceleration waveforms from very high-rate GNSS precise positioning by Xu and his collaborators in 2021,we propose the concept of GNSS gyroscopes and reconstruct angular velocity and acceleration from very high-rate GNSS attitudes by applying regularization under the criterion of minimum mean squared errors.The major results from the experiments can be summarized in the following:(i)angular velocity and acceleration waveforms computed by applying the difference methods to high-rate GNSS attitudes are too noisy and can be physically not meaningful and numerically incorrect.The same can be said about inertial measurement unit(IMU)attitudes,if IMU gyros are not of very high accuracy;(ii)regularization is successfully applied to reconstruct the high-rate angular velocity and acceleration waveforms from 50 Hz GNSS attitudes and significantly outperforms the difference methods,validating the proposed concept of GNSS gyroscopes.By comparing the angular velocity and acceleration results by using the difference methods and regularization,we find that the peak values of angular velocity and acceleration by regularization are much smaller by a maximum factor of 1.57 in the angular velocity to a maximum factor of 8662.53 times in the angular acceleration in the case of high-rate GNSS,and by a maximum factor of 1.26 in the angular velocity to a maximum factor of 2819.85 times in the angular acceleration in the case of IMU,respectively;and(iii)the IMU attitudes apparently lead to better regularized angular velocity and acceleration waveforms than the high-rate GNSS attitudes,which can well be explained by the fact that the former is of better accuracy than the latter.As 展开更多
角速度是旋转系统或传动装置进行状态监测的重要参数。设计了一种新结构、无旋转部件的便携式瞬时角速度传感器。该传感器的工作原理是永磁磁钢建立恒定磁通,被测旋转装置的转动部件切割该恒定磁场后形成涡流,涡流产生的磁场与传感器的...角速度是旋转系统或传动装置进行状态监测的重要参数。设计了一种新结构、无旋转部件的便携式瞬时角速度传感器。该传感器的工作原理是永磁磁钢建立恒定磁通,被测旋转装置的转动部件切割该恒定磁场后形成涡流,涡流产生的磁场与传感器的霍尔元件相互作用产生霍尔电势,该霍尔电势的幅值与被测旋转装置的角速度成正比。根据磁路的基本定律推导出传感器的输出特性,并对输出特性进行了实际的测定,结果表明:传感器的灵敏度为16.8 m V·s/rad,非线性误差为1.24%。展开更多
Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM m...Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.展开更多
It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low an...It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.展开更多
基金supported by the National Natural Science Foundation of China under projects Nos.42174045 and 41874012 awarded to Yun Shi.
文摘Although global navigation satellite systems(GNSS)have been routinely applied to determine attitudes,there exists no literature on determining angular velocity and/or angular acceleration from GNSS.Motivated by the invention of computerized accelerometers of the correspondence author and following the success of accurately recovering translational velocity and acceleration waveforms from very high-rate GNSS precise positioning by Xu and his collaborators in 2021,we propose the concept of GNSS gyroscopes and reconstruct angular velocity and acceleration from very high-rate GNSS attitudes by applying regularization under the criterion of minimum mean squared errors.The major results from the experiments can be summarized in the following:(i)angular velocity and acceleration waveforms computed by applying the difference methods to high-rate GNSS attitudes are too noisy and can be physically not meaningful and numerically incorrect.The same can be said about inertial measurement unit(IMU)attitudes,if IMU gyros are not of very high accuracy;(ii)regularization is successfully applied to reconstruct the high-rate angular velocity and acceleration waveforms from 50 Hz GNSS attitudes and significantly outperforms the difference methods,validating the proposed concept of GNSS gyroscopes.By comparing the angular velocity and acceleration results by using the difference methods and regularization,we find that the peak values of angular velocity and acceleration by regularization are much smaller by a maximum factor of 1.57 in the angular velocity to a maximum factor of 8662.53 times in the angular acceleration in the case of high-rate GNSS,and by a maximum factor of 1.26 in the angular velocity to a maximum factor of 2819.85 times in the angular acceleration in the case of IMU,respectively;and(iii)the IMU attitudes apparently lead to better regularized angular velocity and acceleration waveforms than the high-rate GNSS attitudes,which can well be explained by the fact that the former is of better accuracy than the latter.As
文摘角速度是旋转系统或传动装置进行状态监测的重要参数。设计了一种新结构、无旋转部件的便携式瞬时角速度传感器。该传感器的工作原理是永磁磁钢建立恒定磁通,被测旋转装置的转动部件切割该恒定磁场后形成涡流,涡流产生的磁场与传感器的霍尔元件相互作用产生霍尔电势,该霍尔电势的幅值与被测旋转装置的角速度成正比。根据磁路的基本定律推导出传感器的输出特性,并对输出特性进行了实际的测定,结果表明:传感器的灵敏度为16.8 m V·s/rad,非线性误差为1.24%。
基金supported by the National Natural Science Foundation of China(Grant No.62305388)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.QL20230007).
文摘Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.62273314,U21A20141,and 51821003)Fundamental Research Program of Shanxi Province (Grant No.202303021224008)Shanxi Province Key Laboratory of Quantum Sensing and Precision Measure-ment (Grant No.201905D121001).
文摘It is found that when the parity–time symmetry phenomenon is introduced into the resonant optical gyro system and it works near the exceptional point,the sensitivity can in theory be significantly amplified at low angular rate.However,in fact,the exceptional point is easily disturbed by external environmental variables,which means that it depends on harsh experimental environment and strong control ability,so it is difficult to move towards practical application.Here,we propose a new angular rate sensor structure based on exceptional surface,which has the advantages of high sensitivity and high robustness.The system consists of two fiber-optic ring resonators and two optical loop mirrors,and one of the resonators contains a variable ratio coupler and a variable optical attenuator.We theoretically analyze the system response,and the effects of phase and coupling ratio on the system response.Finally,compared with the conventional resonant gyro,the sensitivity of this exceptional surface angular rate sensor can be improved by about 300 times at low speed.In addition,by changing the loss coefficient in the ring resonator,we can achieve a wide range of 600 rad/s.This scheme provides a new approach for the development of ultra-high sensitivity and wide range angular rate sensors in the future.