2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock ...2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.展开更多
In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway su...In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway support.Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation,a mechanical model for calculating the working resistance of the rock bolt was established and solved.Taking the mining roadway of the 17102(3)working face at the Panji No.3 Coal Mine of China as a research site,with a quadrilateral section roadway,the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied.The results show that when the bolt is in the elastic stage,increasing the pretension and anchorage length can effectively improve the working resistance.When the bolt is in the yield and strain-strengthening stages,increasing the pretension and anchorage length cannot effectively improve the working resistance.The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar.The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt.When pretension and anchorage length are considered separately,the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN,respectively,and the best anchorage lengths are 1.54 and 2.12 m,respectively.The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt,and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN,respectively.The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways.展开更多
Axial compression stress, produced by the pre-tightening force of a bolt, is a necessary condition for surrounding rock to form a whole structure. For this study, we built a mechanical model for an end-anchorage bolt,...Axial compression stress, produced by the pre-tightening force of a bolt, is a necessary condition for surrounding rock to form a whole structure. For this study, we built a mechanical model for an end-anchorage bolt, which represented the effect of a bolt on the surrounding rock in roadways in order to obtain its elastic solution. Simultaneously, we analyzed factors affecting the axial compression of the bolt on the surrounding rock and obtained the axial stress contours of the anchorage area through this elastic solution. The results indicate that 1) the axial compression stress in the anchorage area is proportional to the pre-tightening force and confirms the rule that stress declines sharply with the increase in axial distance from the bolt, with an effective stress radius of 1 m; 2) the maximum axial compression stress declines first and then rises with the increase in depth from the surface of the anchorage surrounding rock and 3) the size of the axial compression area is mainly determined by the length of the bolt.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(41941018).
文摘2G-NPR bolt (the 2nd generation Negative Poisson’s Ratio bolt) is a new type of bolt with high strength, high toughness and no yield platform. It has signifcant efects on improving the shear strength of jointed rock mass and controlling the stability of surrounding rock. To achieve an accurate simulation of bolted joint shear tests, we have studied a numerical simulation method that takes into account the 2G-NPR bolt's tensile–shear fracture criterion. Firstly, the indoor experimental study on the tensile–shear mechanical properties of 2G-NPR bolt is carried out to explore its mechanical properties under diferent tensile–shear angles, and the fracture criterion of 2G-NPR bolt considering the tensile–shear angle is established. Then, a three-dimensional numerical simulation method considering the tensile–shear mechanical constitutive and fracture criterion of 2G-NPR bolt, the elastoplastic mechanical behavior of surrounding rock and the damage and deterioration of grouting body is proposed. The feasibility and accuracy of the method are verifed by comparing with the indoor shear test results of 2G-NPR bolt anchorage joints. Finally, based on the numerical simulation results, the deformation and stress of the bolt, the distribution of the plastic zone of the rock mass, the stress distribution and the damage of the grouting body are analyzed in detail. The research results can provide a good reference value for the practical engineering application and shear mechanical performance analysis of 2G-NPR bolt.
基金This work was supported by the National Natural Science Foundation of China(51774009,51874006,and 51904010)Key Research and Development Projects in Anhui Province(202004a07020045)+2 种基金Colleges and Universities Natural Science Foundation of Anhui(KJ2019A0134)Anhui Provincial Natural Science Foundation(2008085ME147)Anhui University of Technology and Science Graduate Innovation Foundation(2019CX2007).
文摘In coal mining roadway support design,the working resistance of the rock bolt is the key factor affecting its maximum support load.Effective improvement of the working resistance is of great significance to roadway support.Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation,a mechanical model for calculating the working resistance of the rock bolt was established and solved.Taking the mining roadway of the 17102(3)working face at the Panji No.3 Coal Mine of China as a research site,with a quadrilateral section roadway,the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied.The results show that when the bolt is in the elastic stage,increasing the pretension and anchorage length can effectively improve the working resistance.When the bolt is in the yield and strain-strengthening stages,increasing the pretension and anchorage length cannot effectively improve the working resistance.The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar.The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt.When pretension and anchorage length are considered separately,the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN,respectively,and the best anchorage lengths are 1.54 and 2.12 m,respectively.The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt,and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN,respectively.The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways.
基金Projects are the National Basic Research Program of China (No.2007CB209400)the 111 Project (No.B07028)the National Natural Science Foundation of China (Nos.50634050 and 50904065)
文摘Axial compression stress, produced by the pre-tightening force of a bolt, is a necessary condition for surrounding rock to form a whole structure. For this study, we built a mechanical model for an end-anchorage bolt, which represented the effect of a bolt on the surrounding rock in roadways in order to obtain its elastic solution. Simultaneously, we analyzed factors affecting the axial compression of the bolt on the surrounding rock and obtained the axial stress contours of the anchorage area through this elastic solution. The results indicate that 1) the axial compression stress in the anchorage area is proportional to the pre-tightening force and confirms the rule that stress declines sharply with the increase in axial distance from the bolt, with an effective stress radius of 1 m; 2) the maximum axial compression stress declines first and then rises with the increase in depth from the surface of the anchorage surrounding rock and 3) the size of the axial compression area is mainly determined by the length of the bolt.