The term adakite was originally pro- posed to define silica-rich, high Sr/Y and La/Yb vol- canic and plutonic rocks derived from melting of the basaltic portion of oceanic crust subducted beneath volcanic arcs. It was...The term adakite was originally pro- posed to define silica-rich, high Sr/Y and La/Yb vol- canic and plutonic rocks derived from melting of the basaltic portion of oceanic crust subducted beneath volcanic arcs. It was also initially believed that ada- kite only occurs in convergent margins where young and thus still hot oceanic slabs are being subducted, but later studies have proposed that it also occurs in other arc settings where unusual tectonic conditions can lower the solidus of older slabs. Currently, ada- kite covers a range of arc rocks ranging from pristine slab melt, to adakite-peridotite hybrid melt, to melt derived from peridotite metasomatized by slab melt. Adakite studies have generated some confusions because (1) the definition of adakite combines com- positional criteria with a genetic interpretation (melt- ing of subducted basalt), (2) the definition is fairly broad and relies on chemistry as its distinguishing characteristic, (3) the use of high pressure melting experiment results on wet basalts as unequivocal proofs of slab melting and (4) the existence of ada- kitic rocks with chemical characteristics similar to adakites but are clearly unrelated to slab melting. Other studies have shown that adakitic rocks and a number of the previously reported adakites are pro- duced through melting of the mafic lower crust or ponded basaltic magma, high-pressure crystal frac- tionation of basaltic magma and low-pressure crystal fractionation of basaltic magma plus magma mixing processes in both arc or non-arc tectonic environ- ments. Despite the confusing interpretations on the petrogenesis of adakite and adakitic rocks, their in- vestigations have enriched our understanding of material recycling at subduction zones, crustal evolu- tionary processes and economic mineralization.展开更多
Two sets of dehydration-melting with a natural solid amphibolite, collected from North Himalayan structure zone, Tibet, have been carried out in multi-anvil apparatus at 2.0 GPa and 800―1000℃, for 12―200 h. One is ...Two sets of dehydration-melting with a natural solid amphibolite, collected from North Himalayan structure zone, Tibet, have been carried out in multi-anvil apparatus at 2.0 GPa and 800―1000℃, for 12―200 h. One is keeping the pressure at 2.0 GPa and the annealing time of 12 h, changing the temperature (800―1000℃). The other is keeping the pressure at 2.0 GPa and temperature at 850℃, varying the annealing time (12―200 h). The products are inspected with microscope and electron probe. The results indicate that at 2.0 GPa, annealing time of 12 h, garnets, melts and clinopyroxenes occur in amphibolite gradually with increasing temperature and the chemical compositions of melt vary from tonalite to granodiorite, and then to tonalite. However, at 2.0 GPa and 850℃, with the annealing time increasing, the garnets, melts and cli-nopyroxenes also occur in amphibolite gradually and the chemical compositions of melt vary from tonalite to granodiorite. In both cases, melts interconnect with each other when the contents of melt are over the 5 vol.%. the viscosities of the melt produced in amphibolite at temperature higher than 850℃ are on a level with 104 Pa·s. The interconnected melt with such a viscosity may segregate from the source rock and form the magma over reasonable geological time. Therefore, it is believed that at the lower part of the overthickened crust, the tonlitic and grano-dioritic magma may be generated through the dehydration melting of amphibolite.展开更多
文摘The term adakite was originally pro- posed to define silica-rich, high Sr/Y and La/Yb vol- canic and plutonic rocks derived from melting of the basaltic portion of oceanic crust subducted beneath volcanic arcs. It was also initially believed that ada- kite only occurs in convergent margins where young and thus still hot oceanic slabs are being subducted, but later studies have proposed that it also occurs in other arc settings where unusual tectonic conditions can lower the solidus of older slabs. Currently, ada- kite covers a range of arc rocks ranging from pristine slab melt, to adakite-peridotite hybrid melt, to melt derived from peridotite metasomatized by slab melt. Adakite studies have generated some confusions because (1) the definition of adakite combines com- positional criteria with a genetic interpretation (melt- ing of subducted basalt), (2) the definition is fairly broad and relies on chemistry as its distinguishing characteristic, (3) the use of high pressure melting experiment results on wet basalts as unequivocal proofs of slab melting and (4) the existence of ada- kitic rocks with chemical characteristics similar to adakites but are clearly unrelated to slab melting. Other studies have shown that adakitic rocks and a number of the previously reported adakites are pro- duced through melting of the mafic lower crust or ponded basaltic magma, high-pressure crystal frac- tionation of basaltic magma and low-pressure crystal fractionation of basaltic magma plus magma mixing processes in both arc or non-arc tectonic environ- ments. Despite the confusing interpretations on the petrogenesis of adakite and adakitic rocks, their in- vestigations have enriched our understanding of material recycling at subduction zones, crustal evolu- tionary processes and economic mineralization.
基金the National Natural Science Foumndation of China(Grant Nos.10299040 , 40103 003) the Knowleige Innovation Program of the Chinese Acacemy of Sciences(Gant No.RJCX2-SW-No.3).
文摘Two sets of dehydration-melting with a natural solid amphibolite, collected from North Himalayan structure zone, Tibet, have been carried out in multi-anvil apparatus at 2.0 GPa and 800―1000℃, for 12―200 h. One is keeping the pressure at 2.0 GPa and the annealing time of 12 h, changing the temperature (800―1000℃). The other is keeping the pressure at 2.0 GPa and temperature at 850℃, varying the annealing time (12―200 h). The products are inspected with microscope and electron probe. The results indicate that at 2.0 GPa, annealing time of 12 h, garnets, melts and clinopyroxenes occur in amphibolite gradually with increasing temperature and the chemical compositions of melt vary from tonalite to granodiorite, and then to tonalite. However, at 2.0 GPa and 850℃, with the annealing time increasing, the garnets, melts and cli-nopyroxenes also occur in amphibolite gradually and the chemical compositions of melt vary from tonalite to granodiorite. In both cases, melts interconnect with each other when the contents of melt are over the 5 vol.%. the viscosities of the melt produced in amphibolite at temperature higher than 850℃ are on a level with 104 Pa·s. The interconnected melt with such a viscosity may segregate from the source rock and form the magma over reasonable geological time. Therefore, it is believed that at the lower part of the overthickened crust, the tonlitic and grano-dioritic magma may be generated through the dehydration melting of amphibolite.