基于GPS精密点定位(precise point positioning,PPP)技术,利用IGS的精密星历数据编制软件处理了在Amery冰架获取的连续5d的GPS卫星跟踪观测资料,初步获得了冰架前端观测点处的冰流速度和冰流方向。根据定位解算出的高程系列的周期变化,...基于GPS精密点定位(precise point positioning,PPP)技术,利用IGS的精密星历数据编制软件处理了在Amery冰架获取的连续5d的GPS卫星跟踪观测资料,初步获得了冰架前端观测点处的冰流速度和冰流方向。根据定位解算出的高程系列的周期变化,初步推求出观测点处的海潮周日变化参数。研究成果可为后续的物质平衡计算提供依据。展开更多
The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB...The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G3 (2 to 3 events per year). At LGB69, these episodic events coincided with obvious humidity 'pulses' and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km NNE of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anti-correlation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind (>7 m/s), we estimate drift snow may contribute to total SSH up to 35%. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.展开更多
The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the...The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the total circumference of the Antarctic continent. In this study, we used a time series of ENVISAT ASAR images from 2004-2012 and flow lines derived from surface velocity data to monitor the changes in 12 tributaries of the Amery Ice Shelf front. The results show that the Amery Ice Shelf has been expanding and that the rates of expansion differ across the shelf. The highest average annual rate of advance from 2004-2012 was 3.36 m'd-1 and the lowest rate was 1.65 m.d-1. The rates in 2009 and 2010 were generally lower than those in other years. There was a low correlation between the rate of expansion and the atmospheric temperature recorded at a nearby research station, however the mechanism of the relationship was complex. This study shows that the expansion of the Amery Ice Shelf is slowing down, reflecting a changing trend in climate and ice conditions in East Antarctica.展开更多
Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25-27 February 2008 by the 24th Chinese National Antarctic Research Exped...Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25-27 February 2008 by the 24th Chinese National Antarctic Research Expedition (CHINARE) cruise in the 2007/2008 austral summer are analyzed to study thermohaline structures. Analysis reveals warm subsurface water in a limited area around the east end of the northern margin, where the temperature, salinity and density have east-west gradients in the surface layer of the hydrographic section. The localization of the warm subsurface water and the causes of the CTD gradients in the 'surface layer are discussed. In addition, the results from these CTD data analyses are compared with those from the 22nd CHINARE cruise in the 2005/2006 austral summer. This comparison revealed that the thermoclines and haloclines had deepened and their strengths weakened in the 2007/2008 austral summer. The difference between the two data sets and the cause for it can be reasonably explained and attributed to the change in ocean-ice-atmosphere interactions at the northern margin of the Amery Ice Shell展开更多
Delineation of the grounding line(GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation da...Delineation of the grounding line(GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation data to map the GL of the Amery Ice Shelf(AIS) using double-differential synthetic aperture radar interferometry. The ice thickness anomaly deduced from hydrostatic equilibrium and existing Antarctic GL products is compared with our result. With this new and very accurate GL, we detected new ice rises in the north of the AIS. Our new measurement shows no major change of the AIS GL, particularly in the southernmost part.展开更多
文摘基于GPS精密点定位(precise point positioning,PPP)技术,利用IGS的精密星历数据编制软件处理了在Amery冰架获取的连续5d的GPS卫星跟踪观测资料,初步获得了冰架前端观测点处的冰流速度和冰流方向。根据定位解算出的高程系列的周期变化,初步推求出观测点处的海潮周日变化参数。研究成果可为后续的物质平衡计算提供依据。
基金This work was supported by the National Natural Science Foundation of China(Grant No.40305007)Ministry of Science and Te chnology of China(2001CB711003)the Chinese Academy of Sciences(Grant No.KZCX2-303).
文摘The net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a one-year record of hourly snow-height measurements at LGB69 (70°50'S, 77°04'E, 1850 m a.s.l.). east side of Lambert Glacier basin (LGB), and 4 year record at G3 (70°53'S, 69°52'E, 84 m a.s.l.), Amery Ice Shelf (AIS). The measurements were made with ultrasonic sensors mounted on automatic weather stations installed at two sites. The snow accumulation at LGB69 is approximately 70 cm. Throughout the winter, between April and September, there was little change in surface snow height (SSH) at the two sites. The negative SSH change is due to densification at LGB69, and is due to both ablation and densification at G3. The strongest accumulation at two sites occurred during the period between October and March (accounting for 101.6% at LGB69), with four episodic increasing events occurring during 2002 for LGB69, and eight events during 1999-2002 for G3 (2 to 3 events per year). At LGB69, these episodic events coincided with obvious humidity 'pulses' and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km NNE of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anti-correlation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind (>7 m/s), we estimate drift snow may contribute to total SSH up to 35%. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no.20120003110030)the China Postdoctoral Science Foundation (Grant no.201104063)+1 种基金the Open Fund of the SOA Key Laboratory for Polar Science (Grant no.KP201101)the Fundamental Research Funds for the Central Universities (Grant no.105560GR)
文摘The Amery Ice Shelf is the largest ice shelf in East Antarctica. It drains continental ice from an area of more than one million square kilometres through a section of coastline that represents approximately 2% of the total circumference of the Antarctic continent. In this study, we used a time series of ENVISAT ASAR images from 2004-2012 and flow lines derived from surface velocity data to monitor the changes in 12 tributaries of the Amery Ice Shelf front. The results show that the Amery Ice Shelf has been expanding and that the rates of expansion differ across the shelf. The highest average annual rate of advance from 2004-2012 was 3.36 m'd-1 and the lowest rate was 1.65 m.d-1. The rates in 2009 and 2010 were generally lower than those in other years. There was a low correlation between the rate of expansion and the atmospheric temperature recorded at a nearby research station, however the mechanism of the relationship was complex. This study shows that the expansion of the Amery Ice Shelf is slowing down, reflecting a changing trend in climate and ice conditions in East Antarctica.
基金supported by the National Basic Research Priorities Program of China (Grant no.2010CB950301)the National Natural Science Foundation of China (Grant no.40376009)+2 种基金the National Key Technology Research and Development Program of China during the 11th Five Year Plan (Grant no. 2006BAB08B02)the Program of Special Fund Basic ResearchOperating Expenses of First Institute of Oceanography,SOA (Grant no. FIO2010T01)
文摘Conductivity, temperature and depth(CTD) data collected along a zonal hydrographic section from the northern margin of the Amery Ice Shelf on 25-27 February 2008 by the 24th Chinese National Antarctic Research Expedition (CHINARE) cruise in the 2007/2008 austral summer are analyzed to study thermohaline structures. Analysis reveals warm subsurface water in a limited area around the east end of the northern margin, where the temperature, salinity and density have east-west gradients in the surface layer of the hydrographic section. The localization of the warm subsurface water and the causes of the CTD gradients in the 'surface layer are discussed. In addition, the results from these CTD data analyses are compared with those from the 22nd CHINARE cruise in the 2005/2006 austral summer. This comparison revealed that the thermoclines and haloclines had deepened and their strengths weakened in the 2007/2008 austral summer. The difference between the two data sets and the cause for it can be reasonably explained and attributed to the change in ocean-ice-atmosphere interactions at the northern margin of the Amery Ice Shell
基金supported by National Program on Key Basic Research Project (Program 973, Grant no. 2013CBA01804)National Natural Science Foundation of China (Grant nos. 41531069 and 41376187)Chinese Polar Environment Comprehensive Investigation & Assessment Program (Grant no. CHINARE2016-02-04)
文摘Delineation of the grounding line(GL) is necessary for calculating the mass balance of Antarctica, but GL measurements for most of the continent remain at a relatively coarse level. We used Sentinel-1 constellation data to map the GL of the Amery Ice Shelf(AIS) using double-differential synthetic aperture radar interferometry. The ice thickness anomaly deduced from hydrostatic equilibrium and existing Antarctic GL products is compared with our result. With this new and very accurate GL, we detected new ice rises in the north of the AIS. Our new measurement shows no major change of the AIS GL, particularly in the southernmost part.