Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition...Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of- 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.展开更多
As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (AI) toxicity in acid soils prevalent in the tropics and sub-tr...As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (AI) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by AI. In this review of plant AI signaling, we begin by summarizing the understanding of physiological mechanisms of AI resistance, which first led researchers to realize that AI stress induces gene expression and modifies protein function during the activation of AI resistance responses. Subsequently, an overview of AI resistance genes and their function provides verification that AI induction of gene expression plays a major role in AI resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcrip- tional activation of resistance genes has led to the identifica- tion of several transcription factors as well as cis-elements in the promoters of AI resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of AI resistance proteins is addressed, where recent research has shown that AI can both directly bind to and alter activity of certain organic acid transporters, and also influence AI resistance proteins indirectly, via protein phosphorylation.展开更多
Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the alumin...Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...展开更多
文摘Tartary buckwheat (Fagopyrum tataricum) is an important pseudocereal crop that is strongly adapted to growth in adverse environments. Its gluten-free grain contains complete proteins with a well-balanced composition of essential amino acids and is a rich source of beneficial phytochemicals that provide significant health benefits. Here, we report a high-quality, chromosome-scale Tartary buckwheat genome sequence of- 489.3 Mb that is assembled by combining whole-genome shotgun sequencing of both Illumina short reads and single-molecule real-time long reads, sequence tags of a large DNA insert fosmid library, Hi-C sequencing data, and BioNano genome maps. We annotated 33 366 high-confidence protein-coding genes based on expression evidence. Comparisons of the intra-genome with the sugar beet genome revealed an independent whole-genome duplication that occurred in the buckwheat lineage after they diverged from the common ancestor, which was not shared with rosids or asterids. The reference genome facilitated the identification of many new genes predicted to be involved in rutin biosynthesis and regulation, aluminum stress resistance, and in drought and cold stress responses. Our data suggest that Tartary buckwheat's ability to tolerate high levels of abiotic stress is attributed to the expansion of several gene families involved in signal transduction, gene regulation, and membrane transport. The availability of these genomic resources will facilitate the discovery of agronomically and nutritionally important genes and genetic improvement of Tartary buckwheat.
文摘As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (AI) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by AI. In this review of plant AI signaling, we begin by summarizing the understanding of physiological mechanisms of AI resistance, which first led researchers to realize that AI stress induces gene expression and modifies protein function during the activation of AI resistance responses. Subsequently, an overview of AI resistance genes and their function provides verification that AI induction of gene expression plays a major role in AI resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcrip- tional activation of resistance genes has led to the identifica- tion of several transcription factors as well as cis-elements in the promoters of AI resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post-transcriptional and translational regulation of AI resistance proteins is addressed, where recent research has shown that AI can both directly bind to and alter activity of certain organic acid transporters, and also influence AI resistance proteins indirectly, via protein phosphorylation.
基金supported by the Provincial Natural Science Foundation of Hunan Province (04JJ30817)
文摘Bis-3-(triethoxysilyl)propyltetrasulfide(BTESPT) silane-rare earth cerium composite coatings on aluminum-tube were prepared at 60 °C by immersion method.The performance of composite coatings to protect the aluminum-tube against corrosion was investigated with potentiodynamic polarization curves,electrochemical impedance spectroscopy(EIS),and salt spray test(SST).The results of potentiodynamic polarization curves and EIS indicated that the self-corrosion current decreased by two orders of magnitude and the i...