期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement 被引量:8
1
作者 Ankur Gupta Garima Tripathi +1 位作者 Debrupa Lahiri Kantesh Balani 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第6期514-522,共9页
Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements. In the present work, UHMWPE based polymer composites were synthesized by synergistic rei... Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements. In the present work, UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA), bioinert aluminum oxide (Al2O3), and carbon nanotubes (CNTs) using compression molding. Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites. Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles. The hybrid composites exhibited hardness, elastic modulus and toughness comparable to that of UHMWPE. The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements, depicting synergistic enhancement in hardness and elastic modulus. Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties. 展开更多
关键词 Compression molding Ultra high molecular weight polyethylene (UHMWPE) HYDRoXYAPATITE aluminum oxide ai2o3 Carbon nanotubes (CNTs) Nanoindcntation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部