The piecewise algebraic variety is the set of all common zeros of multivariate splines. We show that solving a parametric piecewise algebraic variety amounts to solve a finite number of parametric polynomial systems c...The piecewise algebraic variety is the set of all common zeros of multivariate splines. We show that solving a parametric piecewise algebraic variety amounts to solve a finite number of parametric polynomial systems containing strict inequalities. With the regular decomposition of semi-algebraic systems and the partial cylindrical algebraic decomposition method, we give a method to compute the supremum of the number of torsion-free real zeros of a given zero-dimensional parametric piecewise algebraic variety, and to get distributions of the number of real zeros in every n-dimensional cell when the number reaches the supremum. This method also produces corresponding necessary and sufficient conditions for reaching the supremum and its distributions. We also present an algorithm to produce a necessary and sufficient condition for a given zero-dimensional parametric piecewise algebraic variety to have a given number of distinct torsion-free real zeros in every n-cell in the n-complex.展开更多
In this paper,we introduce a new concept,namelyε-arithmetics,for real vectors of any fixed dimension.The basic idea is to use vectors of rational values(called rational vectors)to approximate vectors of real values o...In this paper,we introduce a new concept,namelyε-arithmetics,for real vectors of any fixed dimension.The basic idea is to use vectors of rational values(called rational vectors)to approximate vectors of real values of the same dimension withinεrange.For rational vectors of a fixed dimension m,they can form a field that is an mth order extension Q(α)of the rational field Q whereαhas its minimal polynomial of degree m over Q.Then,the arithmetics,such as addition,subtraction,multiplication,and division,of real vectors can be defined by using that of their approximated rational vectors withinεrange.We also define complex conjugate of a real vector and then inner product and convolutions of two real vectors and two real vector sequences(signals)of finite length.With these newly defined concepts for real vectors,linear processing,such as linear filtering,ARMA modeling,and least squares fitting,can be implemented to real vectorvalued signals with real vector-valued coefficients,which will broaden the existing linear processing to scalar-valued signals.展开更多
This paper deals with Hilbert's 16th problem and its generalizations. The configurations of all closed branches of an algebraic curve of degree n are discussed. The maximum number of sheets for an algebraic eq...This paper deals with Hilbert's 16th problem and its generalizations. The configurations of all closed branches of an algebraic curve of degree n are discussed. The maximum number of sheets for an algebraic equation of degree n and the maximum number of limit cycles for a planar algebraic autonomous system are achieved. The author also considers different generalizations and some related problems.展开更多
Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vec...Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.展开更多
The algebraic independence of e^θ1,…,e^θs is proved, where θ1,… ,θs are certain gap series or power series of algebraic numbers, or certain transcendental continued fractions with algebraic elements.
Based on the discussion of the number of roots of univariate spline and the common zero points of two piecewise algebraic curves, a lower upbound of Bezout number of two piecewise algebraic curves on any given non-obt...Based on the discussion of the number of roots of univariate spline and the common zero points of two piecewise algebraic curves, a lower upbound of Bezout number of two piecewise algebraic curves on any given non-obtuse-angled triangulation is found. Bezout number of two piecewise algebraic curves on two different partitions is also discussed in this paper.展开更多
Let L be an abelian extension of the rationals Q whose Galois group Gal(L) is an abelian (q-group q is any prime number). The explicit law of prime decomposition in L for any prime number p, the inertia group, residue...Let L be an abelian extension of the rationals Q whose Galois group Gal(L) is an abelian (q-group q is any prime number). The explicit law of prime decomposition in L for any prime number p, the inertia group, residue class degree, and discriminant of L are given here; such fields L are classified into 4 or 8 classes according as q is odd or even with clear description of their structures. Then relative extension L/K is studied. L/K is proved to have a relative integral basis under certain simple conditions; relative discriminant D(L/K) is given explicitly; and necessary and sufficient conditions are obtained for D(L/K) to be generated by a rational square (and by a rational). In particular, it is proved that L/K has a relative integral basis and that D(L/K) is generated by a rational square if [L: K]≥x~* or x~*+1 (according as q is odd or even), where x~* is the exponent of Gal(L). These results contain many related results on similar fields in literature.展开更多
A theorem on the transcendency,for a limit of a sequence of algebraic numbers,is given and used to test the transcendencies of some classes of numbers.
In this paper, we develop an algebraic independence method originated from a work of Mordoukhay-Boltovskoy, which allows us to establish the algebraic independence of certain numbers connected with Liouville numbers. ...In this paper, we develop an algebraic independence method originated from a work of Mordoukhay-Boltovskoy, which allows us to establish the algebraic independence of certain numbers connected with Liouville numbers. This method depends either on elementary results of the Kummer theory or on transcendence measures for certain classes of numbers.展开更多
In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n w...We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n with fixed domination number γ≤(n+2)/3, and finally present a lower bound for the algebraic connectivity in terms of the domination number. We also characterize the minimum algebraic connectivity of graphs with domination number half their order.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 10271022, 60373093,60533060)the Natural Science Foundation of Zhejiang Province (Grant No. Y7080068)the Foundation of Department of Education of Zhejiang Province (Grant Nos. 20070628 and Y200802999)
文摘The piecewise algebraic variety is the set of all common zeros of multivariate splines. We show that solving a parametric piecewise algebraic variety amounts to solve a finite number of parametric polynomial systems containing strict inequalities. With the regular decomposition of semi-algebraic systems and the partial cylindrical algebraic decomposition method, we give a method to compute the supremum of the number of torsion-free real zeros of a given zero-dimensional parametric piecewise algebraic variety, and to get distributions of the number of real zeros in every n-dimensional cell when the number reaches the supremum. This method also produces corresponding necessary and sufficient conditions for reaching the supremum and its distributions. We also present an algorithm to produce a necessary and sufficient condition for a given zero-dimensional parametric piecewise algebraic variety to have a given number of distinct torsion-free real zeros in every n-cell in the n-complex.
文摘In this paper,we introduce a new concept,namelyε-arithmetics,for real vectors of any fixed dimension.The basic idea is to use vectors of rational values(called rational vectors)to approximate vectors of real values of the same dimension withinεrange.For rational vectors of a fixed dimension m,they can form a field that is an mth order extension Q(α)of the rational field Q whereαhas its minimal polynomial of degree m over Q.Then,the arithmetics,such as addition,subtraction,multiplication,and division,of real vectors can be defined by using that of their approximated rational vectors withinεrange.We also define complex conjugate of a real vector and then inner product and convolutions of two real vectors and two real vector sequences(signals)of finite length.With these newly defined concepts for real vectors,linear processing,such as linear filtering,ARMA modeling,and least squares fitting,can be implemented to real vectorvalued signals with real vector-valued coefficients,which will broaden the existing linear processing to scalar-valued signals.
文摘This paper deals with Hilbert's 16th problem and its generalizations. The configurations of all closed branches of an algebraic curve of degree n are discussed. The maximum number of sheets for an algebraic equation of degree n and the maximum number of limit cycles for a planar algebraic autonomous system are achieved. The author also considers different generalizations and some related problems.
基金supported by National Natural Science Foundation of China (Grant No. 10871068)
文摘Property testing was initially studied from various motivations in 1990’s. A code C GF (r)n is locally testable if there is a randomized algorithm which can distinguish with high possibility the codewords from a vector essentially far from the code by only accessing a very small (typically constant) number of the vector’s coordinates. The problem of testing codes was firstly studied by Blum, Luby and Rubinfeld and closely related to probabilistically checkable proofs (PCPs). How to characterize locally testable codes is a complex and challenge problem. The local tests have been studied for Reed-Solomon (RS), Reed-Muller (RM), cyclic, dual of BCH and the trace subcode of algebraicgeometric codes. In this paper we give testers for algebraic geometric codes with linear parameters (as functions of dimensions). We also give a moderate condition under which the family of algebraic geometric codes cannot be locally testable.
文摘The algebraic independence of e^θ1,…,e^θs is proved, where θ1,… ,θs are certain gap series or power series of algebraic numbers, or certain transcendental continued fractions with algebraic elements.
基金Supported by the Educational Commission of Hebei Province of China (Grant No. Z2010260)National Natural Science Foundation of China (Grant Nos. 11126213 and 61170317)
文摘Based on the discussion of the number of roots of univariate spline and the common zero points of two piecewise algebraic curves, a lower upbound of Bezout number of two piecewise algebraic curves on any given non-obtuse-angled triangulation is found. Bezout number of two piecewise algebraic curves on two different partitions is also discussed in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771052).
文摘Let L be an abelian extension of the rationals Q whose Galois group Gal(L) is an abelian (q-group q is any prime number). The explicit law of prime decomposition in L for any prime number p, the inertia group, residue class degree, and discriminant of L are given here; such fields L are classified into 4 or 8 classes according as q is odd or even with clear description of their structures. Then relative extension L/K is studied. L/K is proved to have a relative integral basis under certain simple conditions; relative discriminant D(L/K) is given explicitly; and necessary and sufficient conditions are obtained for D(L/K) to be generated by a rational square (and by a rational). In particular, it is proved that L/K has a relative integral basis and that D(L/K) is generated by a rational square if [L: K]≥x~* or x~*+1 (according as q is odd or even), where x~* is the exponent of Gal(L). These results contain many related results on similar fields in literature.
基金Project supported by the National Natural Science Foundation of China and the Natural Science Foundation of Zhejiang Province.
文摘A theorem on the transcendency,for a limit of a sequence of algebraic numbers,is given and used to test the transcendencies of some classes of numbers.
文摘In this paper, we develop an algebraic independence method originated from a work of Mordoukhay-Boltovskoy, which allows us to establish the algebraic independence of certain numbers connected with Liouville numbers. This method depends either on elementary results of the Kummer theory or on transcendence measures for certain classes of numbers.
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
基金Supported by the National Natural Science Foundation of China(No.11871073,11801007)Natural Science Foundation of Anhui Province(No.1808085MA17)
文摘We investigate how the algebraic connectivity of a graph changes by relocating a connected branch from one vertex to another vertex, and then minimize the algebraic connectivity among all connected graphs of order n with fixed domination number γ≤(n+2)/3, and finally present a lower bound for the algebraic connectivity in terms of the domination number. We also characterize the minimum algebraic connectivity of graphs with domination number half their order.