We first prove that,for any generalized Hamiltonian type Lie algebra H,the first co- homology group H^1(H,H(?)H) is trivial.We then show that all Lie bialgebra structures on H are triangular.
With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a res...With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found.展开更多
We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra E of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable mo...We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra E of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (G J) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simplier construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra gN. As an application, we apply the loop algebra E of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters a and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations.展开更多
The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing ...The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. So it is worth popularizing in the teaching of undergraduate physics and mathematics. Clifford algebras can be directly generalized to 2<sup>n</sup>-ary associative algebras. In this generalization, the matrix representation of the orthonormal basis of space-time plays an important role. The matrix representation carries more information than the abstract definition, such as determinant and the definition of inverse elements. Without this matrix representation, the discussion of hypercomplex numbers will be difficult. The zero norm set of hypercomplex numbers is a closed set of special geometric meanings, like the light-cone in the realistic space-time, which has no substantial effect on the algebraic calculus. The physical equations expressed in Clifford algebra have a simple formalism, symmetrical structure, standard derivation, complete content. Therefore, we can hope that this magical algebra can complete a new large synthesis of modern science.展开更多
The paper is concerned with the robust control problems for exponential controlled closed queuing networks (CCQNs) under uncertain routing probabilities. As the rows of some parameter matrices such as infinitesimal ge...The paper is concerned with the robust control problems for exponential controlled closed queuing networks (CCQNs) under uncertain routing probabilities. As the rows of some parameter matrices such as infinitesimal generators may be dependent, we first transform the objective vector under discounted-cost criteria into a weighed-average cost. Through the solution to Poisson equation,i.e., Markov performance potentials, we then unify both discounted-cost and average-cost problems to study, and derive the gradient formula of the new objective function with respect to the routing probabilities. Some solution techniques are related for searching the optimal robust control policy.Finally, a numerical example is presented and analyzed.展开更多
A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational iden...A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.展开更多
Jordan D-bialgebras were introduced by Zhelyabin.In this paper,we use a new approach to study Jordan D-bialgebras by a new notion of the dual representation of the regular representation of a Jordan algebra.Motivated ...Jordan D-bialgebras were introduced by Zhelyabin.In this paper,we use a new approach to study Jordan D-bialgebras by a new notion of the dual representation of the regular representation of a Jordan algebra.Motivated by the essential connection between Lie bialgebras and Manin triples,we give an explicit proof of the equivalence between Jordan D-bialgebras and a class of special Jordan-Manin triples called double constructions of pseudo-euclidean Jordan algebras.We also show that a Jordan D-bialgebra leads to the Jordan Yang-Baxter equation under the coboundary condition and an antisymmetric nondegenerate solution of the Jordan Yang-Baxter equation corresponds to an antisymmetric bilinear form,which we call a Jordan symplectic form on Jordan algebras.Furthermore,there exists a new algebra structure called pre-Jordan algebra on Jordan algebras with a Jordan symplectic form.展开更多
Hamieh and Abbas [1] propose using a 3-dimensional real algebra in a solution of the Dirac equation. We show that this algebra, denoted by , belongs to a large class of quadratic Jordan algebras with subalgebras isomo...Hamieh and Abbas [1] propose using a 3-dimensional real algebra in a solution of the Dirac equation. We show that this algebra, denoted by , belongs to a large class of quadratic Jordan algebras with subalgebras isomorphic to the complex numbers and that the spinor matrices associated with the solution of the Dirac equation generate a six-dimensional real noncommutative Jordan algebra.展开更多
Using every realization of the Virasoro-type symmetry algebra , we can obtain various high-dimensional integrable models under the meaning that they possess infinitely many symmetries. By means of a concrete realizati...Using every realization of the Virasoro-type symmetry algebra , we can obtain various high-dimensional integrable models under the meaning that they possess infinitely many symmetries. By means of a concrete realization, many -dimensional equations which possess Kac–Moody–Virasoro-type infinite dimensional symmetry algebras are obtained.展开更多
By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimens...By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimensional complex Lie algebras constructed by using linear transformations.The equivalent Lie algebras of the later two with multi-component forms are obtained as well.As their applications,we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.展开更多
The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mecha...The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mechanical analysis model of half infinite crack with cohesive stress is presented. A pair of integral equations is established according to the superposition principle of crack opening displacement in solids, and the fictitious adhesive stress is unknown function . The properties of integral equations are analyzed, and the series function expression of cohesive stress is certified. By means of the data of actual crack opening displacement, two approaches to gain the cohesive stress distribution are proposed through resolving algebra equation. They are the integral transformation method for continuous displacement of actual crack opening, and the least square method for the discrete data of crack opening displacement. The calculation examples of two approaches and associated discussions are given.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No.10471091)"One Hundred Talents Program"from University of Science and Technology of China
文摘We first prove that,for any generalized Hamiltonian type Lie algebra H,the first co- homology group H^1(H,H(?)H) is trivial.We then show that all Lie bialgebra structures on H are triangular.
基金The project supported by the National Key Basic Research Development Project Program under Grant No.G1998030600the Foundation of Liaoning Normal University
文摘With the use of computer algebra, the method that straightforwardly leads to travelling wave solutions is presented. The compound KdV-Burgers equation and KP-B equation are chosen to illustrate this approach. As a result, their abundant new soliton-like solutions and period form solutions are found.
基金Supported by a Research Grant from the CityU Strategic Research under Grant No. 7002564
文摘We develop in this paper a new method to construct two explicit Lie algebras E and F. By using a loop algebra E of the Lie algebra E and the reduced self-dual Yang-Mills equations, we obtain an expanding integrable model of the Giachetti-Johnson (G J) hierarchy whose Hamiltonian structure can also be derived by using the trace identity. This provides a much simplier construction method in comparing with the tedious variational identity approach. Furthermore, the nonlinear integrable coupling of the GJ hierarchy is readily obtained by introducing the Lie algebra gN. As an application, we apply the loop algebra E of the Lie algebra E to obtain a kind of expanding integrable model of the Kaup-Newell (KN) hierarchy which, consisting of two arbitrary parameters a and β, can be reduced to two nonlinear evolution equations. In addition, we use a loop algebra F of the Lie algebra F to obtain an expanding integrable model of the BT hierarchy whose Hamiltonian structure is the same as using the trace identity. Finally, we deduce five integrable systems in R3 based on the self-dual Yang-Mills equations, which include Poisson structures, irregular lines, and the reduced equations.
文摘The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. So it is worth popularizing in the teaching of undergraduate physics and mathematics. Clifford algebras can be directly generalized to 2<sup>n</sup>-ary associative algebras. In this generalization, the matrix representation of the orthonormal basis of space-time plays an important role. The matrix representation carries more information than the abstract definition, such as determinant and the definition of inverse elements. Without this matrix representation, the discussion of hypercomplex numbers will be difficult. The zero norm set of hypercomplex numbers is a closed set of special geometric meanings, like the light-cone in the realistic space-time, which has no substantial effect on the algebraic calculus. The physical equations expressed in Clifford algebra have a simple formalism, symmetrical structure, standard derivation, complete content. Therefore, we can hope that this magical algebra can complete a new large synthesis of modern science.
文摘The paper is concerned with the robust control problems for exponential controlled closed queuing networks (CCQNs) under uncertain routing probabilities. As the rows of some parameter matrices such as infinitesimal generators may be dependent, we first transform the objective vector under discounted-cost criteria into a weighed-average cost. Through the solution to Poisson equation,i.e., Markov performance potentials, we then unify both discounted-cost and average-cost problems to study, and derive the gradient formula of the new objective function with respect to the routing probabilities. Some solution techniques are related for searching the optimal robust control policy.Finally, a numerical example is presented and analyzed.
基金Project supported by the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos.10971136,10831003,61072147,11071159)+3 种基金the Chunhui Plan of the Ministry of Education of Chinathe Innovation Project of Zhejiang Province (No.T200905)the Natural Science Foundation of Shanghai (No.09ZR1410800)the Shanghai Leading Academic Discipline Project (No.J50101)
文摘A class of non-semisimple matrix loop algebras consisting of triangular block matrices is introduced and used to generate bi-integrable couplings of soliton equations from zero curvature equations.The variational identities under non-degenerate,symmetric and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting bi-integrable couplings.A special case of the suggested loop algebras yields nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.
文摘Jordan D-bialgebras were introduced by Zhelyabin.In this paper,we use a new approach to study Jordan D-bialgebras by a new notion of the dual representation of the regular representation of a Jordan algebra.Motivated by the essential connection between Lie bialgebras and Manin triples,we give an explicit proof of the equivalence between Jordan D-bialgebras and a class of special Jordan-Manin triples called double constructions of pseudo-euclidean Jordan algebras.We also show that a Jordan D-bialgebra leads to the Jordan Yang-Baxter equation under the coboundary condition and an antisymmetric nondegenerate solution of the Jordan Yang-Baxter equation corresponds to an antisymmetric bilinear form,which we call a Jordan symplectic form on Jordan algebras.Furthermore,there exists a new algebra structure called pre-Jordan algebra on Jordan algebras with a Jordan symplectic form.
文摘Hamieh and Abbas [1] propose using a 3-dimensional real algebra in a solution of the Dirac equation. We show that this algebra, denoted by , belongs to a large class of quadratic Jordan algebras with subalgebras isomorphic to the complex numbers and that the spinor matrices associated with the solution of the Dirac equation generate a six-dimensional real noncommutative Jordan algebra.
文摘Using every realization of the Virasoro-type symmetry algebra , we can obtain various high-dimensional integrable models under the meaning that they possess infinitely many symmetries. By means of a concrete realization, many -dimensional equations which possess Kac–Moody–Virasoro-type infinite dimensional symmetry algebras are obtained.
文摘By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimensional complex Lie algebras constructed by using linear transformations.The equivalent Lie algebras of the later two with multi-component forms are obtained as well.As their applications,we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.
基金Foundation items: the National Key Basic Research and Development Program (973 Program)(2002CB412709) the National Natural Science Foundation of China (10272068, 50178015) Science Foundation of Shandong Province of China (Y202A02)
文摘The nonlinear fracture behavior of quasi-brittle materials is closely related with the cohesive force distribution of fracture process zone at crack tip. Based on fracture character of quasi-brittle materials, a mechanical analysis model of half infinite crack with cohesive stress is presented. A pair of integral equations is established according to the superposition principle of crack opening displacement in solids, and the fictitious adhesive stress is unknown function . The properties of integral equations are analyzed, and the series function expression of cohesive stress is certified. By means of the data of actual crack opening displacement, two approaches to gain the cohesive stress distribution are proposed through resolving algebra equation. They are the integral transformation method for continuous displacement of actual crack opening, and the least square method for the discrete data of crack opening displacement. The calculation examples of two approaches and associated discussions are given.