For the quantitative determination of Fulvestrant, Benzyl alcohol, and Benzyl benzoate in Fulvestrant injection, an original RP-HPLC approach was developed. The gradient method was developed using HPLC and a Phenomene...For the quantitative determination of Fulvestrant, Benzyl alcohol, and Benzyl benzoate in Fulvestrant injection, an original RP-HPLC approach was developed. The gradient method was developed using HPLC and a Phenomenex Luna C8, 150 × 4.6 mm, i.d 3.0 μm particle size column with a gradient programme of mobile phases A and B. With a flow rate of 1.5 mL/minute, injection volume of 10 μL, and column temperature of 35°C, UV wavelength detection at 254 nm for Benzyl alcohol and Benzoyl Benzoate and 280 nm for Fulvestrant, mobile phase-A consists of DI water and mobile phase-B consists of Acetonitrile. The current study describes a single HPLC method for developing a Fulvestrant (Active), Benzyl alcohol (Cosolvent), and Benzyl Benzoate (Cosolvent) assay for Fulvestrant injection. The assay method was determined to be suitable for quantifying three components in the pharmaceutical product and was verified according to ICH guidelines.展开更多
针对低孔、低渗、含水饱和度高等难动用储层特征造成压裂液在储层中易形成水化膨胀和运移,导致储层水锁、水敏、压裂液返排差等难题,探索和研究适用于致密碎屑岩储层的醇基压裂液体系配方,确定了甲醇加量为15%的最佳醇基压裂液体系。性...针对低孔、低渗、含水饱和度高等难动用储层特征造成压裂液在储层中易形成水化膨胀和运移,导致储层水锁、水敏、压裂液返排差等难题,探索和研究适用于致密碎屑岩储层的醇基压裂液体系配方,确定了甲醇加量为15%的最佳醇基压裂液体系。性能评价结果表明,该醇基压裂液表面张力为24.32 m N/m,伤害率为18.21%,远低于常规压裂液,可有效降低压裂液对储层的水锁伤害。展开更多
文摘For the quantitative determination of Fulvestrant, Benzyl alcohol, and Benzyl benzoate in Fulvestrant injection, an original RP-HPLC approach was developed. The gradient method was developed using HPLC and a Phenomenex Luna C8, 150 × 4.6 mm, i.d 3.0 μm particle size column with a gradient programme of mobile phases A and B. With a flow rate of 1.5 mL/minute, injection volume of 10 μL, and column temperature of 35°C, UV wavelength detection at 254 nm for Benzyl alcohol and Benzoyl Benzoate and 280 nm for Fulvestrant, mobile phase-A consists of DI water and mobile phase-B consists of Acetonitrile. The current study describes a single HPLC method for developing a Fulvestrant (Active), Benzyl alcohol (Cosolvent), and Benzyl Benzoate (Cosolvent) assay for Fulvestrant injection. The assay method was determined to be suitable for quantifying three components in the pharmaceutical product and was verified according to ICH guidelines.
文摘针对低孔、低渗、含水饱和度高等难动用储层特征造成压裂液在储层中易形成水化膨胀和运移,导致储层水锁、水敏、压裂液返排差等难题,探索和研究适用于致密碎屑岩储层的醇基压裂液体系配方,确定了甲醇加量为15%的最佳醇基压裂液体系。性能评价结果表明,该醇基压裂液表面张力为24.32 m N/m,伤害率为18.21%,远低于常规压裂液,可有效降低压裂液对储层的水锁伤害。