A new technology thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3 composite w...A new technology thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3 composite was prepared successfully. The metallographic analysis and performance test show that the microstructure of parts is dense and mechanical properties axe excellent with the volume fraction of Al is 37%. The bend strength and fracture toughness of the composite are about 570- 690 MPa and 8.5-16.8 MPa·m^1/2, respectively. Comparing with reaction in situ and high temperature oxidation technologies the bending strength and fracture toughness are improved greatly. At the same time, it shows that the technology parameters have great influences on the properties. So it is feasible to prepare metal/ceramics composites by the proposed technology.展开更多
A new technology—the thixoforging of ceramics/metal composites in pseudo-semi-solid state was proposed based on the powder metallurgy technology combined with semi-solid metal forming process, and the cup shell of au...A new technology—the thixoforging of ceramics/metal composites in pseudo-semi-solid state was proposed based on the powder metallurgy technology combined with semi-solid metal forming process, and the cup shell of automobile piston with Al2O3/Al composites was prepared. It is proved through metallographic analyses and three-point bending tests that the technology is feasible for the ceramics/metal composites forming. The results show that the tough strength and the degree of hardness of the samples with certain plasticity are high. It will play a very large role in accelerating the ceramics composites and high melt point materials use in more fields and tamp the foundation for further studies of this technology.展开更多
Al/Al203 composites of different ratios were hot-press sintered at 575~640℃ under a pressure of 30 MPa for 2 h in a vacuum furnace. It was found that the relative density of the Al/Al203 ...Al/Al203 composites of different ratios were hot-press sintered at 575~640℃ under a pressure of 30 MPa for 2 h in a vacuum furnace. It was found that the relative density of the Al/Al203 composites could be increased evidently with the rise of sinter temperature. No reaction occurred between At and Al203 at the sinter temperatures. Under 640℃-30 MPa-2 h experimental condition, Al/Al203 system FGM was successfully fabricated, and its density range changed quasi-continuously from 2.887×103 kg/m3 to 3.1909×103 kg/m3 within the middle 1.0 mm thickness range.展开更多
A novel two step mixing method including injection of particles into the melt by inert gas and stirring was used to prepare aluminum matrix composites (AMCs) reinforced with Al2O3 particles. Different mass fractions...A novel two step mixing method including injection of particles into the melt by inert gas and stirring was used to prepare aluminum matrix composites (AMCs) reinforced with Al2O3 particles. Different mass fractions of micro alumina particles were injected into the melt under stirring speed of 300 r/min. Then the samples were extruded with ratios of 1.77 or 1.56. The microstructure observation showed that application of the injection and extrusion processes led to a uniform distribution of particles in the matrix. The density measurements showed that the porosity in the composites increased with increasing the mass fraction of Al2O3 and stirring speed and decreased by extrusion process. Hardness, yield and ultimate tensile strengths of the extruded composites increased with increasing the particle mass fraction to 7%, while for the composites without extrusion they increased with particle mass fraction to 5%.展开更多
The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron mic...The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content.展开更多
In this study ball milling of Al356 and Al2O3 powder mixture was carried out in order to produce Al356-Al2O3 nano-composite containing 20 vol.% Al2O3. The structural evolution and morphological changes of powder parti...In this study ball milling of Al356 and Al2O3 powder mixture was carried out in order to produce Al356-Al2O3 nano-composite containing 20 vol.% Al2O3. The structural evolution and morphological changes of powder particles during ball milling were studied by X-ray diffractometery and scanning electron microscopy analysis. As a result of ball milling Al2O3 particles were uniformly dispersed in Al356 matrix. Furthermore the crystallite size of the Al356 decreased to 25 nm after ball milling for 10 h. Morphological studies of powder particles indicated that the powder particle size continuously decreases with increasing milling time. Hardness and elastic modulus values of powder particles were measured by nanoindentation method. It was found that the hardness and elastic modulus of Al356-20 vol.% Al2O3 nanocomposite were about 216 Hv and 86 GPa, respectively which is higher than 75 Hv and 74 GPa for as-received Al356.展开更多
Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for ...Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for 1 hour. The green density, % porosity, % spring back and hardness of the green compacts were determined. Scanning Electron Microscopy was carried out to observe the morphology of pores and alumina particles in green and sintered compacts. The present study indicates that, densification of the compact increases with increasing compacting pressure and decreases with increasing alumina content. Maximum density achieved is 93% for pure aluminium compacts and decreases to 85% for Al-20 wt% alumina compacts. Grain growth of aluminium particles is noticed in the compacts after sintering at 773 and 873 K. Dispersion of fine alumina particle in the aluminium matrix occurs predominantly in the compact when sintered at 773 K which results in increase in hardness value.展开更多
基金supported by National Natural Science Foundation of China(No50705018)Postdoctoral Foundation of China (No20070420847)
文摘A new technology thixo-die-forging of the composite in pseudo-semi-solid state was proposed based on the powder metallurgy technology combing with semi-solid metal process, and the cup shells with Al/Al2O3 composite was prepared successfully. The metallographic analysis and performance test show that the microstructure of parts is dense and mechanical properties axe excellent with the volume fraction of Al is 37%. The bend strength and fracture toughness of the composite are about 570- 690 MPa and 8.5-16.8 MPa·m^1/2, respectively. Comparing with reaction in situ and high temperature oxidation technologies the bending strength and fracture toughness are improved greatly. At the same time, it shows that the technology parameters have great influences on the properties. So it is feasible to prepare metal/ceramics composites by the proposed technology.
基金Project(50375035) supported by the National Natural Science Foundation of China
文摘A new technology—the thixoforging of ceramics/metal composites in pseudo-semi-solid state was proposed based on the powder metallurgy technology combined with semi-solid metal forming process, and the cup shell of automobile piston with Al2O3/Al composites was prepared. It is proved through metallographic analyses and three-point bending tests that the technology is feasible for the ceramics/metal composites forming. The results show that the tough strength and the degree of hardness of the samples with certain plasticity are high. It will play a very large role in accelerating the ceramics composites and high melt point materials use in more fields and tamp the foundation for further studies of this technology.
基金国家自然科学基金,Foundation of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology
文摘Al/Al203 composites of different ratios were hot-press sintered at 575~640℃ under a pressure of 30 MPa for 2 h in a vacuum furnace. It was found that the relative density of the Al/Al203 composites could be increased evidently with the rise of sinter temperature. No reaction occurred between At and Al203 at the sinter temperatures. Under 640℃-30 MPa-2 h experimental condition, Al/Al203 system FGM was successfully fabricated, and its density range changed quasi-continuously from 2.887×103 kg/m3 to 3.1909×103 kg/m3 within the middle 1.0 mm thickness range.
基金Research Deputy of Ferdowsi University of Mashhad for supporting this project
文摘A novel two step mixing method including injection of particles into the melt by inert gas and stirring was used to prepare aluminum matrix composites (AMCs) reinforced with Al2O3 particles. Different mass fractions of micro alumina particles were injected into the melt under stirring speed of 300 r/min. Then the samples were extruded with ratios of 1.77 or 1.56. The microstructure observation showed that application of the injection and extrusion processes led to a uniform distribution of particles in the matrix. The density measurements showed that the porosity in the composites increased with increasing the mass fraction of Al2O3 and stirring speed and decreased by extrusion process. Hardness, yield and ultimate tensile strengths of the extruded composites increased with increasing the particle mass fraction to 7%, while for the composites without extrusion they increased with particle mass fraction to 5%.
文摘The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content.
文摘In this study ball milling of Al356 and Al2O3 powder mixture was carried out in order to produce Al356-Al2O3 nano-composite containing 20 vol.% Al2O3. The structural evolution and morphological changes of powder particles during ball milling were studied by X-ray diffractometery and scanning electron microscopy analysis. As a result of ball milling Al2O3 particles were uniformly dispersed in Al356 matrix. Furthermore the crystallite size of the Al356 decreased to 25 nm after ball milling for 10 h. Morphological studies of powder particles indicated that the powder particle size continuously decreases with increasing milling time. Hardness and elastic modulus values of powder particles were measured by nanoindentation method. It was found that the hardness and elastic modulus of Al356-20 vol.% Al2O3 nanocomposite were about 216 Hv and 86 GPa, respectively which is higher than 75 Hv and 74 GPa for as-received Al356.
文摘Aluminium-alumina compacts with varying wt% of alumina were compacted in the pressure range of 115 - 290 MPa. Compacts prepared at 290 MPa pressure, were sintered in an argon atmosphere at 573, 673, 773 and 873 K for 1 hour. The green density, % porosity, % spring back and hardness of the green compacts were determined. Scanning Electron Microscopy was carried out to observe the morphology of pores and alumina particles in green and sintered compacts. The present study indicates that, densification of the compact increases with increasing compacting pressure and decreases with increasing alumina content. Maximum density achieved is 93% for pure aluminium compacts and decreases to 85% for Al-20 wt% alumina compacts. Grain growth of aluminium particles is noticed in the compacts after sintering at 773 and 873 K. Dispersion of fine alumina particle in the aluminium matrix occurs predominantly in the compact when sintered at 773 K which results in increase in hardness value.