Harmful algal blooms (HABs), caused by the overgrowth of certain phytoplankton species, have negative effects on marine environments and coastal fisheries. In addition to cell-counting methods using phytoplankton nets...Harmful algal blooms (HABs), caused by the overgrowth of certain phytoplankton species, have negative effects on marine environments and coastal fisheries. In addition to cell-counting methods using phytoplankton nets, a hydroacoustic technique based on acoustic backscattering has been proposed for the detection of phytoplankton blooms. However, little is known of the acoustic properties of HAB species. In this study, as essential data to support this technique, we measured the acoustic properties of two HAB species, Akashiwo sanguinea and Alexandrium affine, which occur in the South Sea off the coast of Korea. Due to the small size of the target, we used ultrasound for the measurements. Experiments were conducted under laboratory and field conditions. In the laboratory experiment, the acoustic signal received from each species was directly proportional to the cell abundance. We derived a relationship between the cell abundance and acoustic signal received for each species. The measured signals were compared to predictions of a fluid sphere scattering model. When A. sanguinea blooms appeared at an abundance greater than 3 500 cells/mL, the acoustic signals varied with cell abundance, showing a good correlation. These results confirm that acoustic measurements can be used to detect HAB species.展开更多
The accurate measurement of gene expression via quantitative real-time reverse transcription PCR(q RT-PCR)heavily relies on the choice of valid reference gene(s) for data normalization. Resting cyst is the dormant...The accurate measurement of gene expression via quantitative real-time reverse transcription PCR(q RT-PCR)heavily relies on the choice of valid reference gene(s) for data normalization. Resting cyst is the dormant stage in the life cycle of dinoflagellate, which plays crucial roles in HAB-forming dinoflagellate ecology. However, only limited investigations have been conducted on the reference gene selection in dinoflagellates. Gap remained in our knowledge about appropriate HKGs for normalizing gene expression in different life stages, which laid obstacles for the application of q RT-PCR to the HAB-forming group. In this study, six candidate reference genes,18 S ribosomal RNA(18S), glyceraldehyde-3-phosphate dehydrogenase(GAPDH), α-tubulin(TUA), β-tubulin(TUB), actin(ACT) and cytochrome oxidase subunit 1(COX1), were evaluated for their expression stability with q RT-PCR and three statistical algorithms(Ge Norm, Norm Finder, and Best Keeper) for the cosmopolitan, harmful algal bloom-forming dinoflagellate Akashiwo sanguinea. Expression patterns were observed across 18 biological samples, including cells at resting stages(resting cysts), different growth stages, in darkness, exposed to abscisic acid(ABA) and exposed to temperature stress. The results indicated that TUA, 18 S and GAPDH were relatively stable across all tested scenarios. While the best-recommended reference genes differed across experimental groups, the pairs of ACT and TUA, 18 S and GAPDH were the most reliable for cells at different growth stages and darkness treatment. The combination of TUA and TUB was the best choice for normalization in resting cysts and in ABA treatment, respectively. The pair of ACT and COX1 was suitable for temperature treatments. This study was the first to investigate the stable internal reference genes in dinoflagellates at different stages of life cycle,particularly in resting cysts. Our results provided useful information for selection of reference genes in dinoflagellates r展开更多
基金project titled "Establishment and demonstration of red tide detection and prediction system for minimizing red tide damage" funded by the Ministry of Oceans and Fisheries, Korea (PM61410)
文摘Harmful algal blooms (HABs), caused by the overgrowth of certain phytoplankton species, have negative effects on marine environments and coastal fisheries. In addition to cell-counting methods using phytoplankton nets, a hydroacoustic technique based on acoustic backscattering has been proposed for the detection of phytoplankton blooms. However, little is known of the acoustic properties of HAB species. In this study, as essential data to support this technique, we measured the acoustic properties of two HAB species, Akashiwo sanguinea and Alexandrium affine, which occur in the South Sea off the coast of Korea. Due to the small size of the target, we used ultrasound for the measurements. Experiments were conducted under laboratory and field conditions. In the laboratory experiment, the acoustic signal received from each species was directly proportional to the cell abundance. We derived a relationship between the cell abundance and acoustic signal received for each species. The measured signals were compared to predictions of a fluid sphere scattering model. When A. sanguinea blooms appeared at an abundance greater than 3 500 cells/mL, the acoustic signals varied with cell abundance, showing a good correlation. These results confirm that acoustic measurements can be used to detect HAB species.
基金The National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406403the State Key Program of National Natural Science of China under contract No.61533011China Postdoctoral Science Foundation under contract Nos 2014M551969 and 2015T80754
文摘The accurate measurement of gene expression via quantitative real-time reverse transcription PCR(q RT-PCR)heavily relies on the choice of valid reference gene(s) for data normalization. Resting cyst is the dormant stage in the life cycle of dinoflagellate, which plays crucial roles in HAB-forming dinoflagellate ecology. However, only limited investigations have been conducted on the reference gene selection in dinoflagellates. Gap remained in our knowledge about appropriate HKGs for normalizing gene expression in different life stages, which laid obstacles for the application of q RT-PCR to the HAB-forming group. In this study, six candidate reference genes,18 S ribosomal RNA(18S), glyceraldehyde-3-phosphate dehydrogenase(GAPDH), α-tubulin(TUA), β-tubulin(TUB), actin(ACT) and cytochrome oxidase subunit 1(COX1), were evaluated for their expression stability with q RT-PCR and three statistical algorithms(Ge Norm, Norm Finder, and Best Keeper) for the cosmopolitan, harmful algal bloom-forming dinoflagellate Akashiwo sanguinea. Expression patterns were observed across 18 biological samples, including cells at resting stages(resting cysts), different growth stages, in darkness, exposed to abscisic acid(ABA) and exposed to temperature stress. The results indicated that TUA, 18 S and GAPDH were relatively stable across all tested scenarios. While the best-recommended reference genes differed across experimental groups, the pairs of ACT and TUA, 18 S and GAPDH were the most reliable for cells at different growth stages and darkness treatment. The combination of TUA and TUB was the best choice for normalization in resting cysts and in ABA treatment, respectively. The pair of ACT and COX1 was suitable for temperature treatments. This study was the first to investigate the stable internal reference genes in dinoflagellates at different stages of life cycle,particularly in resting cysts. Our results provided useful information for selection of reference genes in dinoflagellates r