The wide availability, low radiation dose and short acquisition time of Cone-Beam CT (CBCT) scans make them an attractive source of data for compiling databases of anatomical structures. However CBCT has higher noise ...The wide availability, low radiation dose and short acquisition time of Cone-Beam CT (CBCT) scans make them an attractive source of data for compiling databases of anatomical structures. However CBCT has higher noise and lower contrast than helical slice CT, which makes segmentation more challenging and the optimal methods are not yet known. This paper evaluates several methods of segmenting airway geometries (nares, nasal cavities and pharynx) from typical dental quality head and neck CBCT data. The nasal cavity has narrow and intricate passages and is separated from the paranasal sinuses by thin walls, making it is susceptible to either over- or under-segmentation. The upper airway was split into two: the nasal cavity and the pharyngeal region (nasopharynx to larynx). Each part was segmented using global thresholding, multi-step level-set, and region competition methods (the latter using thresholding, clustering and classification initialisation and edge attraction techniques). The segmented 3D surfaces were evaluated against a reference manual segmentation using distance-, overlap- and volume-based metrics. Global thresholding, multi-step level-set, and region competition all gave satisfactory results for the lower part of the airway (nasopharynx to larynx). Edge attraction failed completely. A semi-automatic region-growing segmentation with multi-thresholding (or classification) initialization offered the best quality segmentation. With some minimal manual editing, it resulted in an accurate upper airway model, as judged by the similarity and volumetric indices, while being the least time consuming of the semi-automatic methods, and relying the least on the operator’s expertise.展开更多
This paper describes a prototype of an automatic system for the detection and evalua-tion of airways of Cystic Fibrosis (CF) patients from Computed Tomography (CT) Scans. The aim of the study is to present a prototype...This paper describes a prototype of an automatic system for the detection and evalua-tion of airways of Cystic Fibrosis (CF) patients from Computed Tomography (CT) Scans. The aim of the study is to present a prototype of an automatic system which could serve as a decision support for radiologists. The area percentages of airway in lung regions have been calculated in CT slices to represent Bronchiectasis stages of CF patients. The proposed automatic system has been tested on a dataset comprising of four CF patients belonging to different stages of Bronchiectasis.展开更多
文摘The wide availability, low radiation dose and short acquisition time of Cone-Beam CT (CBCT) scans make them an attractive source of data for compiling databases of anatomical structures. However CBCT has higher noise and lower contrast than helical slice CT, which makes segmentation more challenging and the optimal methods are not yet known. This paper evaluates several methods of segmenting airway geometries (nares, nasal cavities and pharynx) from typical dental quality head and neck CBCT data. The nasal cavity has narrow and intricate passages and is separated from the paranasal sinuses by thin walls, making it is susceptible to either over- or under-segmentation. The upper airway was split into two: the nasal cavity and the pharyngeal region (nasopharynx to larynx). Each part was segmented using global thresholding, multi-step level-set, and region competition methods (the latter using thresholding, clustering and classification initialisation and edge attraction techniques). The segmented 3D surfaces were evaluated against a reference manual segmentation using distance-, overlap- and volume-based metrics. Global thresholding, multi-step level-set, and region competition all gave satisfactory results for the lower part of the airway (nasopharynx to larynx). Edge attraction failed completely. A semi-automatic region-growing segmentation with multi-thresholding (or classification) initialization offered the best quality segmentation. With some minimal manual editing, it resulted in an accurate upper airway model, as judged by the similarity and volumetric indices, while being the least time consuming of the semi-automatic methods, and relying the least on the operator’s expertise.
文摘为了从胸部CT图像中提取气道树,提出一种人体气道树的快速自动提取算法,其中包括三维区域生长、三维波传递和形态学优化3个步骤,通过多次迭代完成最终提取.区域生长的作用是提取气道树主体,三维波传递和形态学优化用于提取外围细支气管.在波传递中采用模糊逻辑判据,并利用形态学特征防止泄漏.将算法应用于28例数据,结果表明,利用该算法均能成功提取第5级或第6级支气管,且未泄漏;此外,该算法运行速度特别快,提取一个气管树耗时一般小于2 s.
文摘This paper describes a prototype of an automatic system for the detection and evalua-tion of airways of Cystic Fibrosis (CF) patients from Computed Tomography (CT) Scans. The aim of the study is to present a prototype of an automatic system which could serve as a decision support for radiologists. The area percentages of airway in lung regions have been calculated in CT slices to represent Bronchiectasis stages of CF patients. The proposed automatic system has been tested on a dataset comprising of four CF patients belonging to different stages of Bronchiectasis.