A nanostructured thermal barrier coating is prepared by air plasma spraying using the 8wt% Y_2O_3 partially stabilized zirconia nano-powder with an average grain size of 40 nm. The microstructure and phase composition...A nanostructured thermal barrier coating is prepared by air plasma spraying using the 8wt% Y_2O_3 partially stabilized zirconia nano-powder with an average grain size of 40 nm. The microstructure and phase composition of feedstock nano-powder and coating are investigated using SEM, TEM and XRD. It is found that the as-sprayed zirconia coating has an average grain size of 67 nm and mainly consistes of metastable tetragonal phase, together with some monoclinic phase and tetragonal phase. Thermal treatment results show that the grains of the nanostructured coating grow slightly below 900℃, whereas over 1000℃ the gains grow rapidly and monoclinic phase noticeably appeares.展开更多
The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the h...The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.展开更多
文摘A nanostructured thermal barrier coating is prepared by air plasma spraying using the 8wt% Y_2O_3 partially stabilized zirconia nano-powder with an average grain size of 40 nm. The microstructure and phase composition of feedstock nano-powder and coating are investigated using SEM, TEM and XRD. It is found that the as-sprayed zirconia coating has an average grain size of 67 nm and mainly consistes of metastable tetragonal phase, together with some monoclinic phase and tetragonal phase. Thermal treatment results show that the grains of the nanostructured coating grow slightly below 900℃, whereas over 1000℃ the gains grow rapidly and monoclinic phase noticeably appeares.
基金Funded by the Basic Scientific Research of Central Colleges,Chang’an University (No. CHD2011JC126)
文摘The Fe-based amorphous coatings were produced by air plasma spraying. The as-sprayed coatings were heat-treated at the temperature of 573, 873, and 1 023 K, respectively. The crystallization and wear behavior of the heat-treated amorphous coatings were investigated. It was found that the amorphous- nanocrystalline transformation appeared when the as-sprayed coatings were treated at 853 K. The crystallization process had completed and a coating with microcrystallines was formed when the treatment temperature reached 1 023 K. The resultant amorphous and nanocrystalline composite coatings exhibited superior wear resistance compared to crystalline coating. It is attributed to fine grain strengthening of formed nanocrystallines.