Arid and semi-arid areas comprise about 30% of the earth's surface. Changes in climate and climate variability will likely have a significant impact on these regions. The Loess Plateau over Northwest China is a speci...Arid and semi-arid areas comprise about 30% of the earth's surface. Changes in climate and climate variability will likely have a significant impact on these regions. The Loess Plateau over Northwest China is a special semi-arid land surface and part of a dust aerosol source. To improve understanding and capture the direct evidence of the impact of human activity on the semi-arid climate over the Loess Plateau, the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) was established in 2005. SACOL consists of a large set of instruments and focuses on: (1) monitoring of long term tendencies in semiarid climate changes; (2) monitoring of the aerosol effect on the water cycle; (3) studies of interaction between land surface and the atmosphere; (4) improving the land surface and climate models; and (5) validation of space-borne observations. This paper presents a description of SACOL objectives, measurements, and sampling strategies. Preliminary observation results are also reviewed in this paper.展开更多
The studies on the effect of atmospheric aerosol on climate and environment are hot issues in the current circle of international science and technology. In recent years the pollution of aerosol is getting worse and w...The studies on the effect of atmospheric aerosol on climate and environment are hot issues in the current circle of international science and technology. In recent years the pollution of aerosol is getting worse and worse over the Pearl River Delta. The clouds of aerosol occur all year round, with heavy pollution area located at the western side at the mouth of Pearl River. The haze weather mainly occurs from October to April next year, resulting in visibility deterioration. From the beginning of 1980s, visibility dramatically deteriorated, obviously increasing haze weather, in which there are three big fluctuations, showing the periods of pollutions of dust, sulphate and dust, fine particle from photochemical process and sulphate and dust accompanying with the development of economy respectively. The long-term tendency of visibility caused by fog and light fog does not show a tendency due to human activities or economic development, which mainly shows the interannual and interdecadal variation of climate. The deterioration of visibility has close relation to the fine particles over Pearl River Delta, with half of PM10 overpass the limited value set by national second graded standard (150 μg m^-3), meanwhile, all values of PM2.5 overpass the day-mean limited value of American national standard (65 μg m^-3), especially from October to January next year, monthly mean values of PM2.5 almost reach two times of standard value, indicating the fine particle concentration is very high. The ratio of PM2.5 to PM10 is also very high, reaching 58%-77%, higher especially in dry season than in rainy season. Thus it is the fine particle pollution in aerosol pollution over the Pearl River Delta. Compared with the data of 15 years ago, the ratio of fine particle to aerosol has obviously increased.展开更多
采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4...采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4月16日、5月16日、2007年3月30日3次过程沙尘云区大气层顶云的净辐射强迫绝对值比纯云区分别减小了7.1%,17.2%和3.1%,云的冷却效应受到不同程度抑制.纯云区与沙尘云区云的光学特性参量的对比分析结果表明,绝大部分沙尘云区的云粒径、云水路径和光学厚度值均比纯云区的要小.展开更多
基金SACOL was sponsored by Lanzhou University through 985 Programthe National Basic Research Program of China under Grant No. 2006CB400501the National Natural Science Founda- tion of China under Grant Nos. 40633017 and 40725015
文摘Arid and semi-arid areas comprise about 30% of the earth's surface. Changes in climate and climate variability will likely have a significant impact on these regions. The Loess Plateau over Northwest China is a special semi-arid land surface and part of a dust aerosol source. To improve understanding and capture the direct evidence of the impact of human activity on the semi-arid climate over the Loess Plateau, the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) was established in 2005. SACOL consists of a large set of instruments and focuses on: (1) monitoring of long term tendencies in semiarid climate changes; (2) monitoring of the aerosol effect on the water cycle; (3) studies of interaction between land surface and the atmosphere; (4) improving the land surface and climate models; and (5) validation of space-borne observations. This paper presents a description of SACOL objectives, measurements, and sampling strategies. Preliminary observation results are also reviewed in this paper.
基金Natural Science Foundation of China under Nos. 40375002 and 40418008Project "973" under No. 2006CB403701, Natural Science Foundation of Guangdong Province under No. 033029+1 种基金Key Scientific and Technological Projects of Guangdong Province under Nos. 2004A30401002 and 2005B32601011Applied Fundamental Research Projects of Guangzhou under No. 2004J1-0021.
文摘The studies on the effect of atmospheric aerosol on climate and environment are hot issues in the current circle of international science and technology. In recent years the pollution of aerosol is getting worse and worse over the Pearl River Delta. The clouds of aerosol occur all year round, with heavy pollution area located at the western side at the mouth of Pearl River. The haze weather mainly occurs from October to April next year, resulting in visibility deterioration. From the beginning of 1980s, visibility dramatically deteriorated, obviously increasing haze weather, in which there are three big fluctuations, showing the periods of pollutions of dust, sulphate and dust, fine particle from photochemical process and sulphate and dust accompanying with the development of economy respectively. The long-term tendency of visibility caused by fog and light fog does not show a tendency due to human activities or economic development, which mainly shows the interannual and interdecadal variation of climate. The deterioration of visibility has close relation to the fine particles over Pearl River Delta, with half of PM10 overpass the limited value set by national second graded standard (150 μg m^-3), meanwhile, all values of PM2.5 overpass the day-mean limited value of American national standard (65 μg m^-3), especially from October to January next year, monthly mean values of PM2.5 almost reach two times of standard value, indicating the fine particle concentration is very high. The ratio of PM2.5 to PM10 is also very high, reaching 58%-77%, higher especially in dry season than in rainy season. Thus it is the fine particle pollution in aerosol pollution over the Pearl River Delta. Compared with the data of 15 years ago, the ratio of fine particle to aerosol has obviously increased.
文摘采用CERES SSFAqua MODIS Edition 2B/2C和CALIPSO卫星探测资料结合地面台站沙尘观测资料,通过对强沙尘天气过程中纯云区与沙尘云区大气层顶处辐射强迫值的对比分析,研究了我国华北地区沙尘气溶胶对云辐射强迫的影响.研究发现,2006年4月16日、5月16日、2007年3月30日3次过程沙尘云区大气层顶云的净辐射强迫绝对值比纯云区分别减小了7.1%,17.2%和3.1%,云的冷却效应受到不同程度抑制.纯云区与沙尘云区云的光学特性参量的对比分析结果表明,绝大部分沙尘云区的云粒径、云水路径和光学厚度值均比纯云区的要小.