OBJECTIVE: To discuss the clinical criteria for diagnosing diffuse axonal injury (DAI). METHODS: Clinical and computed tomographic features of 117 patients with severe closed head injury were analyzed. The authors pre...OBJECTIVE: To discuss the clinical criteria for diagnosing diffuse axonal injury (DAI). METHODS: Clinical and computed tomographic features of 117 patients with severe closed head injury were analyzed. The authors preliminarily put forward CT diagnostic criteria of DAI, that is, 1) single or multiple small intraparenchymal hemorrhages in the cerebral hemispheres (展开更多
AIM: To identify the prognostic factors with regard to survival for patients with brain metastasis from primary tumors of the gastrointestinal tract. METHODS: Nine hundred and sixteen patients with brain metastases, t...AIM: To identify the prognostic factors with regard to survival for patients with brain metastasis from primary tumors of the gastrointestinal tract. METHODS: Nine hundred and sixteen patients with brain metastases, treated with whole brain radiation therapy (WBRT) between January 1985 and December 2000 at the Department of Radiation Oncology, University Hospital Freiburg, were analyzed retrospectively. RESULTS: Fifty-seven patients presented with a primary tumor of the gastrointestinal tract (esophagus: n=0, stomach: n=10, colorectal: n=47). Twenty-six patients had a solitary brain metastasis, 31 patients presented with multiple brain metastases. Surgical resection was performed in 25 patients. WBRT was applied with daily fractions of 2 Gray (Gy) or 3Gy to a total dose of 50Gy or 30Gy, respectively. The interval between diagnoses of the primary tumors and brain metastases was 22.6mo vs 8.0mo for patients with primary tumors of the colon/rectum vs other primary tumors, respectively (P<0.01, log-rank). Median overall survival for all patients with brain metastases (n=916) was 3.4mo and 3.2mo for patients with gastrointestinal neoplasms. Patients with gastrointestinal primary tumors presented significantly more often with a solitary brain metastasis than patients with other primary tumors (P<0.05, log-rank). In patients with gastrointestinal neoplasms (n=57), the median overall survival was 5.8 mo for patients with solitary brain metastasis vs 2.7mo for patients with multiple brain metastases (P<0.01, log-rank). The median overall survival for patients with a Karnofsky performance status (KPS) ≥70 was 5.5mo vs 2.1mo for patients with KPS <70 (P<0.01, log-rank). At multivariate analysis (Cox Model) the performance status and the number of brain metastases were identified as independent prognostic factors for overall survival. CONCLUSION: Brain metastases occur late in the course of gastrointestinal tumors. Pretherapeutic variables like KPS and the number of brain metastases have a profound influence on treatment o展开更多
There is increasing evidence from epidemiological studies indicating that vitamin D deficiency during adulthood is associated with adverse brain outcomes in humans(Ginde et al.,2009)and rodents(Groves et al.,2014)...There is increasing evidence from epidemiological studies indicating that vitamin D deficiency during adulthood is associated with adverse brain outcomes in humans(Ginde et al.,2009)and rodents(Groves et al.,2014),however,a causal relationship has not yet been established.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced b展开更多
Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas...Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas of the brain:the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle,where new neurons are generated and then migrate to the olfactory bulb.Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells.Interestingly,recent years have seen tremendous progress in our understanding of adult brain neurogenesis,bridging the knowledge gap between embryonic and adult neurogenesis.Here,we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells.In this notion,we talk about the importance of intra cellular signaling molecules in mobilizing endogenous neural stem cell prolife ration.Based on the current understanding,we can declare that these molecules play a role in targeting neurogenesis in the mature brain.However,to achieve this goal,we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints,which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.展开更多
It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the i...It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.展开更多
Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neur...Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies.展开更多
OBJECTIVE: To investigate the growth and development of myelin of sheath fetal brain. METHODS: Forty-four cases of pregnant women were imaged with magnetic resonance (MR) at 0.35 T (tesla). The signal changes of the m...OBJECTIVE: To investigate the growth and development of myelin of sheath fetal brain. METHODS: Forty-four cases of pregnant women were imaged with magnetic resonance (MR) at 0.35 T (tesla). The signal changes of the main structures of fetal brain were analysed. RESULTS: The signal intensity of cerebral (except basal ganglia) and cerebellar matter was hypo-signal on the T1WI (T1 weighted spin-echo image), iso-signal of the PDWI (Proton density weighted image) and hyper-signal on the T2WI (T2 weighted spin-echo image). As to the brain stem and basal ganglia, their signal intensities showed difference in different gestational weeks on T1WI. The intensities were of slight hypo-signal before and iso-signal after the 29th week. However, their signal intensities on PDWI and T2WI were the same as those of the cerebral and cerebellar matter. CONCLUSIONS: There was no myelinization of fetal cerebral (except basal ganglia) and cerebellar matter during pregnant period. The myelin sheath was formed in the brain stem and basal ganglia after 29 gestational weeks. The process of myelinization began from brain stem to basal ganglia.展开更多
Traumatic brain injury(TBI)is a major cause of mortality and morbidity in the pediatric population.With advances in medical care,the mortality rate of pediatric TBI has declined.However,more children and adolescents a...Traumatic brain injury(TBI)is a major cause of mortality and morbidity in the pediatric population.With advances in medical care,the mortality rate of pediatric TBI has declined.However,more children and adolescents are living with TBI-related cognitive and emotional impairments,which negatively affects the quality of their life.Adult hippocampal neurogenesis plays an important role in cognition and mood regulation.Alterations in adult hippocampal neurogenesis are associated with a variety of neurological and neurodegenerative diseases,including TBI.Promoting endogenous hippocampal neurogenesis after TBI merits significant attention.However,TBI affects the function of neural stem/progenitor cells in the dentate gyrus of hippocampus,which results in aberrant migration and impaired dendrite development of adult-born neurons.Therefore,a better understanding of adult hippocampal neurogenesis after TBI can facilitate a more successful neuro-restoration of damage in immature brains.Secondary injuries,such as neuroinflammation and oxidative stress,exert a significant impact on hippocampal neurogenesis.Currently,a variety of therapeutic approaches have been proposed for ameliorating secondary TBI injuries.In this review,we discuss the uniqueness of pediatric TBI,adult hippocampal neurogenesis after pediatric TBI,and current efforts that promote neuroprotection to the developing brains,which can be leveraged to facilitate neuroregeneration.展开更多
There are few pharmacologic options for the treatment of cognitive deficits associated with traumatic brain injury in pediatric patients.Acetylcholinesterase inhibitors such as donepezil have been evaluated in adult p...There are few pharmacologic options for the treatment of cognitive deficits associated with traumatic brain injury in pediatric patients.Acetylcholinesterase inhibitors such as donepezil have been evaluated in adult patients after traumatic brain injury,but relatively less is known about the effect in pediatric populations.The goal of this review is to identify knowledge gaps in the efficacy and safety of acetylcholinesterase inhibito rs as a potential a djuvant treatment fo r neurocognitive decline in pediatric patients with traumatic brain injury.Investigators queried PubMed to identify literature published from database inception thro ugh June 2023 desc ribing the use of donepezil in young adult traumatic brain injury and pediatric patients with predefined conditions.Based on preselected search criteria,340 unique papers we re selected for title and abstra ct screening.Thirty-two reco rds were reviewed in full after eliminating preclinical studies and pape rs outside the scope of the project.In adult traumatic brain injury,we review results from 14 papers detailing 227 subjects where evidence suggests donepezil is well tole rated and shows both objective and patient-reported efficacy for reducing cognitive impairment.In children,3 pape rs report on 5 children recovering from traumatic brain injury,showing limited efficacy.An additional 15 pediatric studies conducted in populations at risk for cognitive dysfunction provide a broader look at safety and efficacy in 210 patients in the pediatric age group.Given its promise for efficacy in adults with traumatic brain injury and tole rability in pediatric patients,we believe further study of donepezil for children and adolescents with traumatic brain injury is warranted.展开更多
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the“weaver”mouse,a model of progressive nigrostriatal degeneration.Here,we extended our...We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the“weaver”mouse,a model of progressive nigrostriatal degeneration.Here,we extended our investigation in two clinically-relevant ways.First,we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors.Second,we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice,at late stages of degeneration.We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells,marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors.In agreement,we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice.However,the graft strongly induced an endogenous neurogenic response throughout the midbrain,which was significantly enhanced by the administration of microneurotrophin BNN-20.Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20.Interestingly,the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.展开更多
文摘OBJECTIVE: To discuss the clinical criteria for diagnosing diffuse axonal injury (DAI). METHODS: Clinical and computed tomographic features of 117 patients with severe closed head injury were analyzed. The authors preliminarily put forward CT diagnostic criteria of DAI, that is, 1) single or multiple small intraparenchymal hemorrhages in the cerebral hemispheres (
文摘AIM: To identify the prognostic factors with regard to survival for patients with brain metastasis from primary tumors of the gastrointestinal tract. METHODS: Nine hundred and sixteen patients with brain metastases, treated with whole brain radiation therapy (WBRT) between January 1985 and December 2000 at the Department of Radiation Oncology, University Hospital Freiburg, were analyzed retrospectively. RESULTS: Fifty-seven patients presented with a primary tumor of the gastrointestinal tract (esophagus: n=0, stomach: n=10, colorectal: n=47). Twenty-six patients had a solitary brain metastasis, 31 patients presented with multiple brain metastases. Surgical resection was performed in 25 patients. WBRT was applied with daily fractions of 2 Gray (Gy) or 3Gy to a total dose of 50Gy or 30Gy, respectively. The interval between diagnoses of the primary tumors and brain metastases was 22.6mo vs 8.0mo for patients with primary tumors of the colon/rectum vs other primary tumors, respectively (P<0.01, log-rank). Median overall survival for all patients with brain metastases (n=916) was 3.4mo and 3.2mo for patients with gastrointestinal neoplasms. Patients with gastrointestinal primary tumors presented significantly more often with a solitary brain metastasis than patients with other primary tumors (P<0.05, log-rank). In patients with gastrointestinal neoplasms (n=57), the median overall survival was 5.8 mo for patients with solitary brain metastasis vs 2.7mo for patients with multiple brain metastases (P<0.01, log-rank). The median overall survival for patients with a Karnofsky performance status (KPS) ≥70 was 5.5mo vs 2.1mo for patients with KPS <70 (P<0.01, log-rank). At multivariate analysis (Cox Model) the performance status and the number of brain metastases were identified as independent prognostic factors for overall survival. CONCLUSION: Brain metastases occur late in the course of gastrointestinal tumors. Pretherapeutic variables like KPS and the number of brain metastases have a profound influence on treatment o
文摘There is increasing evidence from epidemiological studies indicating that vitamin D deficiency during adulthood is associated with adverse brain outcomes in humans(Ginde et al.,2009)and rodents(Groves et al.,2014),however,a causal relationship has not yet been established.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced b
文摘Adult neurogenesis,the process of creating new neurons,involves the coordinated division,migration,and differentiation of neural stem cells.This process is restricted to neurogenic niches located in two distinct areas of the brain:the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle,where new neurons are generated and then migrate to the olfactory bulb.Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells.Interestingly,recent years have seen tremendous progress in our understanding of adult brain neurogenesis,bridging the knowledge gap between embryonic and adult neurogenesis.Here,we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells.In this notion,we talk about the importance of intra cellular signaling molecules in mobilizing endogenous neural stem cell prolife ration.Based on the current understanding,we can declare that these molecules play a role in targeting neurogenesis in the mature brain.However,to achieve this goal,we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints,which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
基金supported by the National Natural Science Foundation of China(No.30571909,No.30872666)the Youth Teacher Foundation of Jiangsu Pro-vince(No.BU134701)China,and the Medical Development Foundation of Soochow University(No.EE134615)
文摘It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.
基金supported by the SIAT Innovation Program for Excellent Young Researchers,No.E1G0241001(to XZ)。
文摘Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies.
文摘OBJECTIVE: To investigate the growth and development of myelin of sheath fetal brain. METHODS: Forty-four cases of pregnant women were imaged with magnetic resonance (MR) at 0.35 T (tesla). The signal changes of the main structures of fetal brain were analysed. RESULTS: The signal intensity of cerebral (except basal ganglia) and cerebellar matter was hypo-signal on the T1WI (T1 weighted spin-echo image), iso-signal of the PDWI (Proton density weighted image) and hyper-signal on the T2WI (T2 weighted spin-echo image). As to the brain stem and basal ganglia, their signal intensities showed difference in different gestational weeks on T1WI. The intensities were of slight hypo-signal before and iso-signal after the 29th week. However, their signal intensities on PDWI and T2WI were the same as those of the cerebral and cerebellar matter. CONCLUSIONS: There was no myelinization of fetal cerebral (except basal ganglia) and cerebellar matter during pregnant period. The myelin sheath was formed in the brain stem and basal ganglia after 29 gestational weeks. The process of myelinization began from brain stem to basal ganglia.
基金This work was supported by the Startup Grant for ZZ from the Department of Natural Sciences,University of Michigan-Dearborn and“CASL Faculty Summer Research Grant”for ZZ from Office of Research&Sponsored Programs,University of Michigan-Dearborn.
文摘Traumatic brain injury(TBI)is a major cause of mortality and morbidity in the pediatric population.With advances in medical care,the mortality rate of pediatric TBI has declined.However,more children and adolescents are living with TBI-related cognitive and emotional impairments,which negatively affects the quality of their life.Adult hippocampal neurogenesis plays an important role in cognition and mood regulation.Alterations in adult hippocampal neurogenesis are associated with a variety of neurological and neurodegenerative diseases,including TBI.Promoting endogenous hippocampal neurogenesis after TBI merits significant attention.However,TBI affects the function of neural stem/progenitor cells in the dentate gyrus of hippocampus,which results in aberrant migration and impaired dendrite development of adult-born neurons.Therefore,a better understanding of adult hippocampal neurogenesis after TBI can facilitate a more successful neuro-restoration of damage in immature brains.Secondary injuries,such as neuroinflammation and oxidative stress,exert a significant impact on hippocampal neurogenesis.Currently,a variety of therapeutic approaches have been proposed for ameliorating secondary TBI injuries.In this review,we discuss the uniqueness of pediatric TBI,adult hippocampal neurogenesis after pediatric TBI,and current efforts that promote neuroprotection to the developing brains,which can be leveraged to facilitate neuroregeneration.
基金Division of Neurology,Cincinnati Children’s Hospital Medical Center(as a Medical Student Scholars Program award to ALM)。
文摘There are few pharmacologic options for the treatment of cognitive deficits associated with traumatic brain injury in pediatric patients.Acetylcholinesterase inhibitors such as donepezil have been evaluated in adult patients after traumatic brain injury,but relatively less is known about the effect in pediatric populations.The goal of this review is to identify knowledge gaps in the efficacy and safety of acetylcholinesterase inhibito rs as a potential a djuvant treatment fo r neurocognitive decline in pediatric patients with traumatic brain injury.Investigators queried PubMed to identify literature published from database inception thro ugh June 2023 desc ribing the use of donepezil in young adult traumatic brain injury and pediatric patients with predefined conditions.Based on preselected search criteria,340 unique papers we re selected for title and abstra ct screening.Thirty-two reco rds were reviewed in full after eliminating preclinical studies and pape rs outside the scope of the project.In adult traumatic brain injury,we review results from 14 papers detailing 227 subjects where evidence suggests donepezil is well tole rated and shows both objective and patient-reported efficacy for reducing cognitive impairment.In children,3 pape rs report on 5 children recovering from traumatic brain injury,showing limited efficacy.An additional 15 pediatric studies conducted in populations at risk for cognitive dysfunction provide a broader look at safety and efficacy in 210 patients in the pediatric age group.Given its promise for efficacy in adults with traumatic brain injury and tole rability in pediatric patients,we believe further study of donepezil for children and adolescents with traumatic brain injury is warranted.
基金co-financed by Greece and the European Union(European Social Fund-ESF)through the Operational Programme《Human Resources Development,Education and Lifelong Learning 2014–2020》in the context of the project“NeuroProPar”(MIS 5047138,to IK)。
文摘We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the“weaver”mouse,a model of progressive nigrostriatal degeneration.Here,we extended our investigation in two clinically-relevant ways.First,we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors.Second,we assessed if BNN-20 can boost the outcome of mouse neural progenitor cell intranigral transplantations in weaver mice,at late stages of degeneration.We found that BNN-20 has limited direct effects on cultured human induced pluripotent stem cell-derived neural progenitor cells,marginally enhancing their differentiation towards neurons and partially reversing the pathological phenotype of dopaminergic neurons generated from parkinsonian donors.In agreement,we found no effects of BNN-20 on the mouse neural progenitor cells grafted in the substantia nigra of weaver mice.However,the graft strongly induced an endogenous neurogenic response throughout the midbrain,which was significantly enhanced by the administration of microneurotrophin BNN-20.Our results provide straightforward evidence of the existence of an endogenous midbrain neurogenic system that can be specifically strengthened by BNN-20.Interestingly,the lack of major similar activity on cultured human induced pluripotent stem cell-derived neural progenitors and their progeny reveals the in vivo specificity of the aforementioned pro-neurogenic effect.