Al2O3 and Ti-6Al-4V alloy were brazed with Ag-Cu-Ti +B fillers in different brazing conditions. Effects of brazing temperature, holding time and additive Ti content on joints microstructure and shear strength were in...Al2O3 and Ti-6Al-4V alloy were brazed with Ag-Cu-Ti +B fillers in different brazing conditions. Effects of brazing temperature, holding time and additive Ti content on joints microstructure and shear strength were investigated by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, transmission electron microscopy and shear testing. Results indicate that TiCu and Ti(Cu,Al) decrease, but Ti2Cu and -Ti2(Cu,Al) increase in brazing seam with increasing brazing temperature, holding time and additive Ti content. Area consisting of Ti3(Cu,Al)30 and TiO near Al2O3 becomes gradually discontinuous from continuity when brazing temperature rises or holding time extends. As Ti additive content increases, TiO is absent near Al2O3, area consisting of only Ti3(Cu,Al)30 thickens. TiB whiskers are in situ synthesized by Ti and B atoms during brazing process. The brazing temperature, holding time and additive Ti content on joints microstructure influence the joints shear strength directly. The shear strength of joints, obtained at 850 ℃ holding for 10 min, reaches the maximum of 78 MPa. According to the experimental results, phase diagram and thermodynamics calculation, the interface evolution mechanism of the Al2O3/Ti-6Al-4V alloy joint was analyzed.展开更多
Effects of microalloying Ti and B on the microstructures and low temperature toughness of manual metal arc (MMA) deposits were investi- gated.Weld metals containing 200-300 ppm Ti and 29-60 ppm B deposited by manual c...Effects of microalloying Ti and B on the microstructures and low temperature toughness of manual metal arc (MMA) deposits were investi- gated.Weld metals containing 200-300 ppm Ti and 29-60 ppm B deposited by manual coated elec- trodes provided an optimum low temperature toughness.The addition of B in weld metals low- ered the γ→α transformation temperature which promoted the acicular ferrite (AF) transformation. Solid solutioned B suppressed grain boundary ferrite as well as side plate ferrite formation and benefited the acicular ferrite formation.Titanium protected B from oxidizing as well as nitriding and formed Ti-Mn silicate inclusions.Ultra-high volt- age electron microscope analyses showed that TiO structure in the Ti-Mn silicate inclusions was the favorable nucleation site for acicular ferrite forma- tion.展开更多
基金the National Natural Science Foundation of China (Grant Nos.51275135,51105107 and 51021002)the Natural Science Foundation of Heilongjiang Province,China (Grant No.QC2011C044)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20112302130005)
文摘Al2O3 and Ti-6Al-4V alloy were brazed with Ag-Cu-Ti +B fillers in different brazing conditions. Effects of brazing temperature, holding time and additive Ti content on joints microstructure and shear strength were investigated by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, transmission electron microscopy and shear testing. Results indicate that TiCu and Ti(Cu,Al) decrease, but Ti2Cu and -Ti2(Cu,Al) increase in brazing seam with increasing brazing temperature, holding time and additive Ti content. Area consisting of Ti3(Cu,Al)30 and TiO near Al2O3 becomes gradually discontinuous from continuity when brazing temperature rises or holding time extends. As Ti additive content increases, TiO is absent near Al2O3, area consisting of only Ti3(Cu,Al)30 thickens. TiB whiskers are in situ synthesized by Ti and B atoms during brazing process. The brazing temperature, holding time and additive Ti content on joints microstructure influence the joints shear strength directly. The shear strength of joints, obtained at 850 ℃ holding for 10 min, reaches the maximum of 78 MPa. According to the experimental results, phase diagram and thermodynamics calculation, the interface evolution mechanism of the Al2O3/Ti-6Al-4V alloy joint was analyzed.
文摘Effects of microalloying Ti and B on the microstructures and low temperature toughness of manual metal arc (MMA) deposits were investi- gated.Weld metals containing 200-300 ppm Ti and 29-60 ppm B deposited by manual coated elec- trodes provided an optimum low temperature toughness.The addition of B in weld metals low- ered the γ→α transformation temperature which promoted the acicular ferrite (AF) transformation. Solid solutioned B suppressed grain boundary ferrite as well as side plate ferrite formation and benefited the acicular ferrite formation.Titanium protected B from oxidizing as well as nitriding and formed Ti-Mn silicate inclusions.Ultra-high volt- age electron microscope analyses showed that TiO structure in the Ti-Mn silicate inclusions was the favorable nucleation site for acicular ferrite forma- tion.