There is a strong climate gradient in the Inner Mongolia region, China, with solar radiation and air temperature increasing but precipitation decreasing gradually from the northeast to the southwest. Sixteen Cara- gan...There is a strong climate gradient in the Inner Mongolia region, China, with solar radiation and air temperature increasing but precipitation decreasing gradually from the northeast to the southwest. Sixteen Cara- gana species exist in the Inner Mongolia region. These Caragana species exhibit a distribution pattern across moisture zones and form a geographical replacement series. In order to examine the mechanisms responsible for Caragana species distribution pattern, we selected 12 Caragana species that exhibit a distinct distribution pattern across multiple moisture zones in the Inner Mongolia region, and determined the relationships between the leaf ecological and physiological traits of these Caragana species and the aridity index and solar radiation. Along with the climatic drought gradient and the solar radiation intensification from the northeast to the southwest, leaf eco- logical characteristics of Caragana species changed drastically, i.e. the leaf shape gradually turned from flat into tegular or tubbish; the leaf hair became denser, longer and lighter in color; the leaf area, leaf biomass and specific leaf area (SLA) decreased significantly; the leaf thickness and the ratio of leaf thickness to leaf area increased sig- nificantly; and the leaf chlorophyll content decreased significantly. As the climatic drought stress increased, osmotic potentials of the main osmotic adjustment substances and the cytoplasmic ion concentration of Caragana species increased significantly. Meanwhile, the total and free water contents and water potential of leaves decreased sig- nificantly; the ratio of bound to free water increased significantly; the stomatal conductance and transpiration rate reduced significantly; and the water use efficiency (WUE) increased significantly. In addition, with the intensification of climatic drought stress, peroxidase (POD) and superoxide dismutase (SOD) activities in leaves increased significantly. As a result, the malondialdehyde (MDA) content increased while the oxyg展开更多
Poikilothermic animals living in high-altitude environments can be greatly affected by the anaerobic metabolism and lactate recycling, which are catalyzed by an enzyme called lactate dehydrogenase(LDH). However, the f...Poikilothermic animals living in high-altitude environments can be greatly affected by the anaerobic metabolism and lactate recycling, which are catalyzed by an enzyme called lactate dehydrogenase(LDH). However, the function and possible regulatory mechanisms of their anaerobic glycolysis remained elusive. We compared the difference in LDH between a native high-altitude(4 353 m) lizard, Phrynocephalus erythrurus, and a closely related species, Phrynocephalus przewalskii that lives in intermediate altitude environment(1 400 m). The activity of LDH, the concentration of lactate, the distribution of isoenzyme, and the mRNA amounts of Ldh-A and Ldh-B were determined. In cardiac muscle, the lactate-forming activity of P. erythrurus in LDH was higher than of P. przewalskii LDH at all three temperatures tested(10 °C, 25 °C and 35 °C), while lactate-oxidation activity of LDH was significantly different between the two species only at 25 °C and 35 °C. In skeletal muscle, both lactate-forming and lactate-oxidation rates of P. erythrurus were lower than that of P. przewalskii. There was a higher proportion of H subunit and a significantly higher expression of Ldh-B, with a concomitant decrease of lactate concentration in P. erythrurus. These results indicate that P. erythrurus may have a strong potential for anaerobic metabolism, which is likely adapted to the hypoxic environment at high altitudes. Furthermore, P. erythrurus is capable of oxidizing more lactate than P. przewalskii. The Ldh-A cDNA of the two species consists of a 999 bp open reading frame(ORF), which encodes 332 amino acids, while Ldh-B cDNA consists of a 1 002 bp ORF encoding 333 amino acids. LDHA has the same amino acid sequence between the two species, but three amino acid substitutions(V12 I, N21S and N318K) were observed in LDHB. Structure analysis of LDH indicated that the substitutions of residues Val12 and Asp21 in P. erythrurus could be responsible for the highaltitude adaptation. The LDH characteristics of LDH in P. erythrurus suggest unique a展开更多
This article proposes a new theoretical framework that supports the preparation of local communities to deal with climate impacts.In this framework,derived from the metabolism model,the resources that form the input(s...This article proposes a new theoretical framework that supports the preparation of local communities to deal with climate impacts.In this framework,derived from the metabolism model,the resources that form the input(social capital and practical conditions)for design charrettes are processed to deliver output resources in the form of enhanced and sophisticated spatial design propositions,which are more resilient en adaptive.Elaborating this model,processing input to deliver desired outputs can only occur when deep learning experiences are offered to the local community.The framework is used and tested in two case studies in northwest Victoria,the City of Bendigo and town of Sea Lake.The findings from the study show the performance of the framework and the improved properties of the design propositions.Conducting design charrettes has two effects.New ways of collaboration are explored allowing exchange to happen between community members with different interests.This leads to new social constructs that are capable of achieving results that would be otherwise impossible or unknown of.Secondly,the design propositions suggest highly resilient and adaptive spatial transformations in the city or town.展开更多
BACKGROUND Perinatal exposure to a poor nutritional environment predisposes the progeny to the development of metabolic disease at the adult age,both in experimental models and humans.Numerous adaptive responses to ma...BACKGROUND Perinatal exposure to a poor nutritional environment predisposes the progeny to the development of metabolic disease at the adult age,both in experimental models and humans.Numerous adaptive responses to maternal protein restriction have been reported in metabolic tissues.However,the expression of glucose/fatty acid metabolism-related genes in adipose tissue and liver needs to be described.AIM To evaluate the metabolic impact of perinatal malnutrition,we determined malnutrition-associated gene expression alterations in liver and adipose tissue.METHODS In the present study,we evaluated the alterations in gene expression of glycolytic/Krebs cycle genes(Pyruvate dehydrogenase kinase 4 and citrate synthase),adipogenic and lipolytic genes and leptin in the adipose tissue of offspring rats at 30 d and 90 d of age exposed to maternal isocaloric low protein(LP)diet throughout gestation and lactation.We also evaluated,in the livers of the same animals,the same set of genes as well as the gene expression of the transcription factors peroxisome proliferator-activated receptor gamma coactivator 1,forkhead box protein O1 and hepatocyte nuclear factor 4 and of gluconeogenic genes.RESULTS In the adipose tissue,we observed a transitory(i.e.,at 30 d)downregulation of pyruvate dehydrogenase kinase 4,citrate synthase and carnitine palmitoyl transferase 1b gene expression.Such transcriptional changes did not persist in adult LP rats(90 d),but we observed a tendency towards a decreased gene expression of leptin(P=0.052).The liver featured some gene expression alterations comparable to the adipose tissue,such as pyruvate dehydrogenase kinase 4 downregulation at 30 d and displayed other tissue-specific changes,including citrate synthase and fatty acid synthase upregulation,but pyruvate kinase downregulation at 30 d in the LP group and carnitine palmitoyl transferase 1b downregulation at 90 d.These gene alterations,together with previously described changes in gene expression in skeletal muscle,may account for the metabolic a展开更多
基金funded by the National Natural Science Foundation of China (31170381, 31100330)the National Basic Research Program of China (2007CB106802)
文摘There is a strong climate gradient in the Inner Mongolia region, China, with solar radiation and air temperature increasing but precipitation decreasing gradually from the northeast to the southwest. Sixteen Cara- gana species exist in the Inner Mongolia region. These Caragana species exhibit a distribution pattern across moisture zones and form a geographical replacement series. In order to examine the mechanisms responsible for Caragana species distribution pattern, we selected 12 Caragana species that exhibit a distinct distribution pattern across multiple moisture zones in the Inner Mongolia region, and determined the relationships between the leaf ecological and physiological traits of these Caragana species and the aridity index and solar radiation. Along with the climatic drought gradient and the solar radiation intensification from the northeast to the southwest, leaf eco- logical characteristics of Caragana species changed drastically, i.e. the leaf shape gradually turned from flat into tegular or tubbish; the leaf hair became denser, longer and lighter in color; the leaf area, leaf biomass and specific leaf area (SLA) decreased significantly; the leaf thickness and the ratio of leaf thickness to leaf area increased sig- nificantly; and the leaf chlorophyll content decreased significantly. As the climatic drought stress increased, osmotic potentials of the main osmotic adjustment substances and the cytoplasmic ion concentration of Caragana species increased significantly. Meanwhile, the total and free water contents and water potential of leaves decreased sig- nificantly; the ratio of bound to free water increased significantly; the stomatal conductance and transpiration rate reduced significantly; and the water use efficiency (WUE) increased significantly. In addition, with the intensification of climatic drought stress, peroxidase (POD) and superoxide dismutase (SOD) activities in leaves increased significantly. As a result, the malondialdehyde (MDA) content increased while the oxyg
基金supported by the National Natural Science Foundation of China (No. 31501860 to Xiaolong TANG, No. 31272313 and No. 31472005 to Qiang CHEN) Fundamental Research Funds for the Central Universities (lzujbky-2017-150 to Xiaolong TANG)Natural Science Foundation of Gansu Province: 1506RJYA243
文摘Poikilothermic animals living in high-altitude environments can be greatly affected by the anaerobic metabolism and lactate recycling, which are catalyzed by an enzyme called lactate dehydrogenase(LDH). However, the function and possible regulatory mechanisms of their anaerobic glycolysis remained elusive. We compared the difference in LDH between a native high-altitude(4 353 m) lizard, Phrynocephalus erythrurus, and a closely related species, Phrynocephalus przewalskii that lives in intermediate altitude environment(1 400 m). The activity of LDH, the concentration of lactate, the distribution of isoenzyme, and the mRNA amounts of Ldh-A and Ldh-B were determined. In cardiac muscle, the lactate-forming activity of P. erythrurus in LDH was higher than of P. przewalskii LDH at all three temperatures tested(10 °C, 25 °C and 35 °C), while lactate-oxidation activity of LDH was significantly different between the two species only at 25 °C and 35 °C. In skeletal muscle, both lactate-forming and lactate-oxidation rates of P. erythrurus were lower than that of P. przewalskii. There was a higher proportion of H subunit and a significantly higher expression of Ldh-B, with a concomitant decrease of lactate concentration in P. erythrurus. These results indicate that P. erythrurus may have a strong potential for anaerobic metabolism, which is likely adapted to the hypoxic environment at high altitudes. Furthermore, P. erythrurus is capable of oxidizing more lactate than P. przewalskii. The Ldh-A cDNA of the two species consists of a 999 bp open reading frame(ORF), which encodes 332 amino acids, while Ldh-B cDNA consists of a 1 002 bp ORF encoding 333 amino acids. LDHA has the same amino acid sequence between the two species, but three amino acid substitutions(V12 I, N21S and N318K) were observed in LDHB. Structure analysis of LDH indicated that the substitutions of residues Val12 and Asp21 in P. erythrurus could be responsible for the highaltitude adaptation. The LDH characteristics of LDH in P. erythrurus suggest unique a
文摘This article proposes a new theoretical framework that supports the preparation of local communities to deal with climate impacts.In this framework,derived from the metabolism model,the resources that form the input(social capital and practical conditions)for design charrettes are processed to deliver output resources in the form of enhanced and sophisticated spatial design propositions,which are more resilient en adaptive.Elaborating this model,processing input to deliver desired outputs can only occur when deep learning experiences are offered to the local community.The framework is used and tested in two case studies in northwest Victoria,the City of Bendigo and town of Sea Lake.The findings from the study show the performance of the framework and the improved properties of the design propositions.Conducting design charrettes has two effects.New ways of collaboration are explored allowing exchange to happen between community members with different interests.This leads to new social constructs that are capable of achieving results that would be otherwise impossible or unknown of.Secondly,the design propositions suggest highly resilient and adaptive spatial transformations in the city or town.
基金Supported by the CAPES/COFECUB,No.797-14the National Council for Research–Brazil,No.477915/2012-4.
文摘BACKGROUND Perinatal exposure to a poor nutritional environment predisposes the progeny to the development of metabolic disease at the adult age,both in experimental models and humans.Numerous adaptive responses to maternal protein restriction have been reported in metabolic tissues.However,the expression of glucose/fatty acid metabolism-related genes in adipose tissue and liver needs to be described.AIM To evaluate the metabolic impact of perinatal malnutrition,we determined malnutrition-associated gene expression alterations in liver and adipose tissue.METHODS In the present study,we evaluated the alterations in gene expression of glycolytic/Krebs cycle genes(Pyruvate dehydrogenase kinase 4 and citrate synthase),adipogenic and lipolytic genes and leptin in the adipose tissue of offspring rats at 30 d and 90 d of age exposed to maternal isocaloric low protein(LP)diet throughout gestation and lactation.We also evaluated,in the livers of the same animals,the same set of genes as well as the gene expression of the transcription factors peroxisome proliferator-activated receptor gamma coactivator 1,forkhead box protein O1 and hepatocyte nuclear factor 4 and of gluconeogenic genes.RESULTS In the adipose tissue,we observed a transitory(i.e.,at 30 d)downregulation of pyruvate dehydrogenase kinase 4,citrate synthase and carnitine palmitoyl transferase 1b gene expression.Such transcriptional changes did not persist in adult LP rats(90 d),but we observed a tendency towards a decreased gene expression of leptin(P=0.052).The liver featured some gene expression alterations comparable to the adipose tissue,such as pyruvate dehydrogenase kinase 4 downregulation at 30 d and displayed other tissue-specific changes,including citrate synthase and fatty acid synthase upregulation,but pyruvate kinase downregulation at 30 d in the LP group and carnitine palmitoyl transferase 1b downregulation at 90 d.These gene alterations,together with previously described changes in gene expression in skeletal muscle,may account for the metabolic a