期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
AdaBoost算法研究进展与展望 被引量:262
1
作者 曹莹 苗启广 +1 位作者 刘家辰 高琳 《自动化学报》 EI CSCD 北大核心 2013年第6期745-758,共14页
AdaBoost是最优秀的Boosting算法之一,有着坚实的理论基础,在实践中得到了很好的推广和应用.算法能够将比随机猜测略好的弱分类器提升为分类精度高的强分类器,为学习算法的设计提供了新的思想和新的方法.本文首先介绍Boosting猜想提出... AdaBoost是最优秀的Boosting算法之一,有着坚实的理论基础,在实践中得到了很好的推广和应用.算法能够将比随机猜测略好的弱分类器提升为分类精度高的强分类器,为学习算法的设计提供了新的思想和新的方法.本文首先介绍Boosting猜想提出以及被证实的过程,在此基础上,引出AdaBoost算法的起源与最初设计思想;接着,介绍AdaBoost算法训练误差与泛化误差分析方法,解释了算法能够提高学习精度的原因;然后,分析了AdaBoost算法的不同理论分析模型,以及从这些模型衍生出的变种算法;之后,介绍AdaBoost算法从二分类到多分类的推广.同时,介绍了AdaBoost及其变种算法在实际问题中的应用情况.本文围绕AdaBoost及其变种算法来介绍在集成学习中有着重要地位的Boosting理论,探讨Boosting理论研究的发展过程以及未来的研究方向,为相关研究人员提供一些有用的线索.最后,对今后研究进行了展望,对于推导更紧致的泛化误差界、多分类问题中的弱分类器条件、更适合多分类问题的损失函数、更精确的迭代停止条件、提高算法抗噪声能力以及从子分类器的多样性角度优化AdaBoost算法等问题值得进一步深入与完善. 展开更多
关键词 集成学习 BOOSTING adaboost 泛化误差 分类间隔 多分类
下载PDF
基于AdaBoost组合学习方法的岩爆分类预测研究 被引量:41
2
作者 葛启发 冯夏庭 《岩土力学》 EI CSCD 北大核心 2008年第4期943-948,共6页
针对岩爆等级划分问题,考虑了岩爆灾害发生的多种主要影响因素,采用新的数据挖掘方法AdaBoost(即Adaptive Boosting)的组合学习方法,结合流行的人工神经网络BP算法,构建了集成神经网络AdaBoost—ANN(简称AB—ANN)的岩爆等级多分类预测... 针对岩爆等级划分问题,考虑了岩爆灾害发生的多种主要影响因素,采用新的数据挖掘方法AdaBoost(即Adaptive Boosting)的组合学习方法,结合流行的人工神经网络BP算法,构建了集成神经网络AdaBoost—ANN(简称AB—ANN)的岩爆等级多分类预测模型。该模型克服了单一弱分类器的不稳定性,提高了分类器精度,实验结果表明,预测的结果与实际值比较吻合,证明了该方法的可行性。 展开更多
关键词 岩爆 等级分类 数据挖掘 adaboost 神经网络
下载PDF
视频运动目标检测方法的对比分析 被引量:26
3
作者 赵文哲 秦世引 《科技导报》 CAS CSCD 北大核心 2009年第10期64-70,共7页
针对视频运动目标检测领域的研究现状,对帧间差分法、背景建模法、图像分割法、聚类分析法、运动矢量场法等视频运动目标检测方法的算法适应性、复杂度等性能进行了对比分析。辅以典型的视频运动目标检测实例,比较了各种方法的适用范围... 针对视频运动目标检测领域的研究现状,对帧间差分法、背景建模法、图像分割法、聚类分析法、运动矢量场法等视频运动目标检测方法的算法适应性、复杂度等性能进行了对比分析。辅以典型的视频运动目标检测实例,比较了各种方法的适用范围与优劣特点,可为不同应用场合下视频运动目标检测方法的选择提供参考依据。指出了现阶段视频运动目标检测技术研发的瓶颈所在,以及在新的应用需求背景下所面临的挑战,并对进一步的发展趋势作了预测和评估。 展开更多
关键词 目标检测 帧间差分法 背景建模法 adaboost分类 运动矢量场
下载PDF
人脸的性别分类 被引量:16
4
作者 武勃 艾海舟 +1 位作者 肖习攀 徐光祐 《计算机研究与发展》 EI CSCD 北大核心 2003年第11期1546-1553,共8页
人脸的性别分类是指根据人脸的图像判别其性别的模式识别问题.系统地研究了不同的特征提取方法和分类方法在性别分类问题上的性能,其中包括主分量分析(PCA)、Fisher线性鉴别分析(FLD)、最佳特征提取、Adaboost算法、支持向量机(SVM).给... 人脸的性别分类是指根据人脸的图像判别其性别的模式识别问题.系统地研究了不同的特征提取方法和分类方法在性别分类问题上的性能,其中包括主分量分析(PCA)、Fisher线性鉴别分析(FLD)、最佳特征提取、Adaboost算法、支持向量机(SVM).给出了在9姿态人脸库、FERET人脸库和一个网络图片人脸库上的对比实验结果.实验表明人脸中的性别信息集中存在于某个子空间中,因此,在分类前对样本进行适当的压缩降维不但不会明显降低分类器的性能,而且可以大大减少分类的时间开销.最后介绍了将性别分类器与自动人脸检测和特征提取平台集成起来的基于人脸图像的性别判别系统. 展开更多
关键词 性别分类 主分量分析 FISHER线性鉴别分析 adaboost 支持向量机
下载PDF
基于词频分类器集成的文本分类方法 被引量:22
5
作者 姜远 周志华 《计算机研究与发展》 EI CSCD 北大核心 2006年第10期1681-1687,共7页
提出了一种基于词频分类器集成的文本分类方法·词频分类器是在对文本中的单词和它在每个文本中出现的频率进行统计后得到的简单分类器·虽然词频分类器本身泛化能力不强,但它不仅计算代较小,而且在训练样本甚至类别增加时易于... 提出了一种基于词频分类器集成的文本分类方法·词频分类器是在对文本中的单词和它在每个文本中出现的频率进行统计后得到的简单分类器·虽然词频分类器本身泛化能力不强,但它不仅计算代较小,而且在训练样本甚至类别增加时易于进行更新,而整个学习系统的泛化能力可以由集成学习机制来提高,因此,词频分类器很适合用做集成学习的基分类器·在集成时,使用了改进的AdaBoost算法,加入了一种强制重新分布权的机制,避免算法过早停止,更加适合文本分类任务·在标准文集Reuters-21578上的实验结果表明,该方法能取得很好的效果· 展开更多
关键词 文本分类 机器学习 集成学习 词频分类器 adaboost
下载PDF
基于Adaboost算法的并网光伏发电系统的孤岛检测法 被引量:24
6
作者 贾科 宣振文 +2 位作者 林瑶琦 魏宏升 李光辉 《电工技术学报》 EI CSCD 北大核心 2018年第5期1106-1113,共8页
目前光伏并网发电系统的孤岛检测多采用主、被动法结合的方法,然而无法有效确定参考电气量的阈值,导致孤岛检测存在死区,同时也可能影响电能质量。基于此,提出了一种基于Adaboost算法的智能被动式孤岛检测方法,通过仿真建立光伏系统并... 目前光伏并网发电系统的孤岛检测多采用主、被动法结合的方法,然而无法有效确定参考电气量的阈值,导致孤岛检测存在死区,同时也可能影响电能质量。基于此,提出了一种基于Adaboost算法的智能被动式孤岛检测方法,通过仿真建立光伏系统并网和孤岛运行的数据库,提取可判断并网和孤岛运行两种状态的特征量,利用Adaboost算法建立判断并网和孤岛运行状态的二分类模型,应用该模型根据某一运行状态下的特征量对其进行分类。该方法需要建立比较完备的数据库,选择合适的电气量作为判据。该方法避免了传统孤岛检测法各电气量阈值无法确定的问题,不引入扰动信号,不干扰电能质量。最后通过仿真验证了其检测孤岛的可靠性。 展开更多
关键词 孤岛检测 adaboost算法 智能被动式检测法 分类模型
下载PDF
基于欠采样和代价敏感的不平衡数据分类算法 被引量:22
7
作者 王俊红 闫家荣 《计算机应用》 CSCD 北大核心 2021年第1期48-52,共5页
针对不平衡数据集中的少数类在传统分类器上预测精度低的问题,提出了一种基于欠采样和代价敏感的不平衡数据分类算法——USCBoost。首先在AdaBoost算法每次迭代训练基分类器之前对多数类样本按权重由大到小进行排序,根据样本权重选取与... 针对不平衡数据集中的少数类在传统分类器上预测精度低的问题,提出了一种基于欠采样和代价敏感的不平衡数据分类算法——USCBoost。首先在AdaBoost算法每次迭代训练基分类器之前对多数类样本按权重由大到小进行排序,根据样本权重选取与少数类样本数量相当的多数类样本;之后将采样后的多数类样本权重归一化并与少数类样本组成临时训练集训练基分类器;其次在权重更新阶段,赋予少数类更高的误分代价,使得少数类样本权重增加更快,并且多数类样本权重增加更慢。在10组UCI数据集上,将USCBoost与AdaBoost、AdaCost、RUSBoost进行对比实验。实验结果表明USCBoost在F1-measure和G-mean准则下分别在6组和9组数据集获得了最高的评价指标。可见所提算法在不平衡数据上具有更好的分类性能。 展开更多
关键词 不平衡数据 分类 代价敏感 adaboost算法 欠采样
下载PDF
基于Adaboost算法的田间猕猴桃识别方法 被引量:20
8
作者 詹文田 何东健 史世莲 《农业工程学报》 EI CAS CSCD 北大核心 2013年第23期140-146,共7页
实现猕猴桃自动化采摘的关键是自然环境下果实的准确识别。为提高田间猕猴桃果实的识别效果,基于Adaboost算法,利用RGB、HSI、La*b*3个颜色空间中的1个或多个通道构建6个不同的弱分类器,用采集的猕猴桃果实和背景共300个样本点进行训练... 实现猕猴桃自动化采摘的关键是自然环境下果实的准确识别。为提高田间猕猴桃果实的识别效果,基于Adaboost算法,利用RGB、HSI、La*b*3个颜色空间中的1个或多个通道构建6个不同的弱分类器,用采集的猕猴桃果实和背景共300个样本点进行训练生成1个强分类器。然后选择655个测试样本点进行验证,强分类器分类精度为94.20%,高于任意弱分类器。对80幅图像中215个猕猴桃进行试验,结果表明:Adaboost算法可有效抑制天空、地表等复杂背景的影响,适合于自然场景下的猕猴桃图像识别,识别率高达96.7%。该技术大大提高了猕猴桃采摘机器人的作业效率。 展开更多
关键词 图像识别 果实 算法 猕猴桃 adaboost 分类器 分类精度
下载PDF
利用AdaBoost算法进行高分辨率影像的面向对象分类 被引量:17
9
作者 龚健雅 姚璜 沈欣 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第12期1440-1443,1448,共5页
利用面向对象的遥感影像处理技术,通过影像分割构建影像对象,选取若干分割后的影像对象作为训练样本。利用提取出的训练样本并利用多种特征(光谱、纹理、空间),使用AdaBoost算法对影像对象进行分类。QuickBird影像分类实验证明了此方法... 利用面向对象的遥感影像处理技术,通过影像分割构建影像对象,选取若干分割后的影像对象作为训练样本。利用提取出的训练样本并利用多种特征(光谱、纹理、空间),使用AdaBoost算法对影像对象进行分类。QuickBird影像分类实验证明了此方法的有效性。 展开更多
关键词 遥感 高分辨率 影像分类 面向对象 adaboost
原文传递
基于支持向量机的无穷维AdaBoost算法及其应用 被引量:14
10
作者 刘冲 张均东 +2 位作者 曾鸿 任光 纪玉龙 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第4期764-769,共6页
AdaBoost算法能够集成比随机猜测略好的弱分类器,输出较高分类精度的强分类器。为了进一步提高AdaBoost算法的分类精度,建立了一种基于支持向量机的无穷维AdaBoost算法,实现无穷维AdaBoost算法的关键是建立一个新的支持向量机核函数,使... AdaBoost算法能够集成比随机猜测略好的弱分类器,输出较高分类精度的强分类器。为了进一步提高AdaBoost算法的分类精度,建立了一种基于支持向量机的无穷维AdaBoost算法,实现无穷维AdaBoost算法的关键是建立一个新的支持向量机核函数,使此核函数集成无穷多个AdaBoost算法弱分类器。将无穷维AdaBoost算法用于模拟电路故障诊断,故障诊断结果表明:无穷维AdaBoost算法分类精度优于有限维AdaBoost算法,提高了AdaBoost算法的分类精度。 展开更多
关键词 adaboost算法 支持向量机 核函数 超平面 分类精度
下载PDF
基于AdaBoost改进随机森林的高光谱图像地物分类方法研究 被引量:15
11
作者 陈伟民 张凌 +4 位作者 宋冬梅 王斌 丁亚雄 许明明 崔建勇 《遥感技术与应用》 CSCD 北大核心 2018年第4期612-620,共9页
为了提升传统等权随机森林的分类精度,提出基于自适应提升(Adaptive Boosting,AdaBoost)的加权随机森林组合算法。该方法引入样本权重的概念,根据样本是否被正确分类调整各个样本的权重,使得分类器更加重视被错分的样本,依据分类器的分... 为了提升传统等权随机森林的分类精度,提出基于自适应提升(Adaptive Boosting,AdaBoost)的加权随机森林组合算法。该方法引入样本权重的概念,根据样本是否被正确分类调整各个样本的权重,使得分类器更加重视被错分的样本,依据分类器的分类错误率赋予其在组合模型中的投票权重。利用黑河生态水文CASI高光谱数据和黄河口CHRIS高光谱遥感数据对该方法进行实验验证,结果表明:与等权随机森林相比,加权随机森林在总体分类精度、平均分类精度和Kappa系数有着更好的表现,并在实验中取得了高于等权随机森林与支持向量机(Support Vector Machine,SVM)的分类结果。 展开更多
关键词 adaboost 随机森林 高光谱 图像分类
原文传递
中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究 被引量:10
12
作者 张妮娜 张珂 +2 位作者 李运平 李曦 刘涛 《遥感技术与应用》 CSCD 北大核心 2023年第1期163-172,共10页
为探究不同机器学习模型在我国南方典型湿润山区的植被类型分类效果,基于无人机遥感影像、实地观测数据、数字高程模型建立遥感特征,选用决策树、随机森林、支持向量机和AdaBoost模型在安徽屯溪流域构建植被类型遥感分类模型;选择总体... 为探究不同机器学习模型在我国南方典型湿润山区的植被类型分类效果,基于无人机遥感影像、实地观测数据、数字高程模型建立遥感特征,选用决策树、随机森林、支持向量机和AdaBoost模型在安徽屯溪流域构建植被类型遥感分类模型;选择总体精度、Kappa系数、均方误差、用户精度和生产者精度等评价指标,分析对比4种机器学习模型在典型小流域的适用性。结果表明:对于林地类型,AdaBoost模型分类精度最高,表明AdaBoost模型在林地分类中有明显的优势;对于非林地类型,模型之间精度差异较大,随机森林模型精度最高;整体而言,4种模型在南方典型湿润山区典型小流域均可获得较好的分类效果,其中AdaBoost模型总体精度为95.55%、Kappa系数为0.9419,均为最高,支持向量机模型表现均最低。地形因子、纹理特征等辅助特征为分类过程提供了重要信息,有助于提高分类精度。 展开更多
关键词 无人机遥感 植被分类 机器学习 决策树 随机森林 支持向量机 adaboost
原文传递
基于BP-Adaboost方法的天然地震和人工爆炸事件波形信号分类识别研究 被引量:13
13
作者 赵刚 黄汉明 +2 位作者 卢欣欣 郭世豪 柴慧敏 《地震工程学报》 CSCD 北大核心 2017年第3期557-563,共7页
BP神经网络和支持向量机(SVM)是两种主流的分类识别方法,用于天然地震和人工爆炸事件波形信号分类识别时取得了较好的效果。但BP神经网络存在易陷入局部最优及隐层数和隐层节点数与训练样本数据密切相关而无法有效预先确定;而支持向量机... BP神经网络和支持向量机(SVM)是两种主流的分类识别方法,用于天然地震和人工爆炸事件波形信号分类识别时取得了较好的效果。但BP神经网络存在易陷入局部最优及隐层数和隐层节点数与训练样本数据密切相关而无法有效预先确定;而支持向量机(SVM)方法则缺乏有效手段来选取合适的核函数,从中不能很好地扩展到多分类。针对天然地震和人工爆炸事件波形信号的分类识别问题,文中将上述两种方法和集成学习——BP-Adaboost方法进行了对比实验研究。据对所选用的地震、爆炸事件波形信号数据集的分类识别结果表明,BP-Adaboost方法得到了98%以上的正确识别率,并且具有较好的泛化能力。相较于BP神经网络和PCA-SVM方法,BP-Adaboost方法对于数据集的划分和识别结果具有更好的鲁棒性,应用于天然地震和人工爆炸事件波形信号分类识别时,可取得更好的识别效果。同时,结合Adaboost方法的原理,阐述了BP-Adaboost方法拥有更好分类结果和泛化能力的原因。 展开更多
关键词 分类识别 地震波形信号 BP-adaboost 集成学习 BP神经网络 支持向量机(SVM)
下载PDF
多分类BP-AdaBoost算法研究与应用 被引量:11
14
作者 吕雁飞 侯子骄 张凯 《高技术通讯》 CAS CSCD 北大核心 2015年第5期437-444,共8页
研究了多类别样本数据集的分类,针对传统的"一对一"或"一对多"BP-AdaBoost算法,训练时间开销随着训练样本数以及训练样本种类的增加急剧增加,使其实际应用十分受限,尤其不适用于大规模数据分类的问题,提出了将多分... 研究了多类别样本数据集的分类,针对传统的"一对一"或"一对多"BP-AdaBoost算法,训练时间开销随着训练样本数以及训练样本种类的增加急剧增加,使其实际应用十分受限,尤其不适用于大规模数据分类的问题,提出了将多分类BP神经网络与使用多类分类指数损失函数的逐步叠加建模(SAMME)算法相结合以构造AdaBoost强发类的Multi-BP AdaBoost算法,实现模型信息的有效利用与融合增强。对传统"一对多"BPAdaBoost算法和Multi-BP AdaBoost算法进行了对比试验,结果表明,在相同测试情况下,后者有效降低了BP-AdaBoost训练过程中的时间开销。 展开更多
关键词 adaboost BP神经网络 二分类 多分类
下载PDF
具有Fisher一致性的代价敏感Boosting算法 被引量:11
15
作者 曹莹 苗启广 +1 位作者 刘家辰 高琳 《软件学报》 EI CSCD 北大核心 2013年第11期2584-2596,共13页
AdaBoost是一种重要的集成学习元算法,算法最核心的特性"Boosting"也是解决代价敏感学习问题的有效方法.然而,各种代价敏感Boosting算法,如AdaCost、AdaC系列算法、CSB系列算法等采用启发式策略,向AdaBoost算法的加权投票因... AdaBoost是一种重要的集成学习元算法,算法最核心的特性"Boosting"也是解决代价敏感学习问题的有效方法.然而,各种代价敏感Boosting算法,如AdaCost、AdaC系列算法、CSB系列算法等采用启发式策略,向AdaBoost算法的加权投票因子计算公式或权值调整策略中加入代价参数,迫使算法聚焦于高代价样本.然而,这些启发式策略没有经过理论分析的验证,对原算法的调整破坏了AdaBoost算法最重要的Boosting特性。AdaBoost算法收敛于贝叶斯决策,与之相比,这些代价敏感Boosting并不能收敛到代价敏感的贝叶斯决策.针对这一问题,研究严格遵循Boosting理论框架的代价敏感Boosting算法.首先,对分类间隔的指数损失函数以及Logit损失函数进行代价敏感改造,可以证明新的损失函数具有代价意义下的Fisher一致性,在理想情况下,优化这些损失函数最终收敛到代价敏感贝叶斯决策;其次,在Boosting框架下使用函数空间梯度下降方法优化新的损失函数得到算法AsyB以及AsyBL.二维高斯人工数据上的实验结果表明,与现有代价敏感Boosting算法相比,AsyB和AsyBL算法能够有效逼近代价敏感贝叶斯决策;UCI数据集上的测试结果也进一步验证了AsyB以及AsyBL算法能够生成有更低错分类代价的代价敏感分类器,并且错分类代价随迭代呈指数下降. 展开更多
关键词 代价敏感学习 贝叶斯决策 Fisher一致性 adaboost 二分类
下载PDF
新的基于代价敏感集成学习的非平衡数据集分类方法NIBoost 被引量:11
16
作者 王莉 陈红梅 王生武 《计算机应用》 CSCD 北大核心 2019年第3期629-633,共5页
现实生活中存在大量的非平衡数据,大多数传统的分类算法假定类分布平衡或者样本的错分代价相同,因此在对这些非平衡数据进行分类时会出现少数类样本错分的问题。针对上述问题,在代价敏感的理论基础上,提出了一种新的基于代价敏感集成学... 现实生活中存在大量的非平衡数据,大多数传统的分类算法假定类分布平衡或者样本的错分代价相同,因此在对这些非平衡数据进行分类时会出现少数类样本错分的问题。针对上述问题,在代价敏感的理论基础上,提出了一种新的基于代价敏感集成学习的非平衡数据分类算法——NIBoost (New Imbalanced Boost)。首先,在每次迭代过程中利用过采样算法新增一定数目的少数类样本来对数据集进行平衡,在该新数据集上训练分类器;其次,使用该分类器对数据集进行分类,并得到各样本的预测类标及该分类器的分类错误率;最后,根据分类错误率和预测的类标计算该分类器的权重系数及各样本新的权重。实验采用决策树、朴素贝叶斯作为弱分类器算法,在UCI数据集上的实验结果表明,当以决策树作为基分类器时,与RareBoost算法相比,F-value最高提高了5.91个百分点、G-mean最高提高了7.44个百分点、AUC最高提高了4.38个百分点;故该新算法在处理非平衡数据分类问题上具有一定的优势。 展开更多
关键词 非平衡数据集 分类 代价敏感 过采样 adaboost算法
下载PDF
基于强化表征学习深度森林的文本情感分类 被引量:10
17
作者 韩慧 王黎明 +1 位作者 柴玉梅 刘箴 《计算机科学》 CSCD 北大核心 2019年第7期172-179,共8页
为了有效实现评论文本的情感倾向性预测,在深度森林模型的基础上提出一种基于强化表征学习的深度森林算法BFDF(Boosting Feature of Deep Forest)来对文本进行情感分类。首先,提取二元特征与情感语义概率特征;其次,对二元特征中的评价... 为了有效实现评论文本的情感倾向性预测,在深度森林模型的基础上提出一种基于强化表征学习的深度森林算法BFDF(Boosting Feature of Deep Forest)来对文本进行情感分类。首先,提取二元特征与情感语义概率特征;其次,对二元特征中的评价对象做聚类处理以及特征融合;然后,改进深度森林级联层的表征学习能力,避免特征信息逐渐削减;最后,将AdaBoost方法融入到深度森林,使深度森林注意到不同特征的重要性,进而得到改进的模型BFDF。在酒店评论语料集上进行了实验验证,实验结果证明了该方法的有效性。 展开更多
关键词 情感分类 特征提取 深度森林 adaboost
下载PDF
基于改进VGG-16神经网络的图像分类方法 被引量:10
18
作者 田佳鹭 邓立国 《计算技术与自动化》 2021年第2期131-135,共5页
为提高图像分类模型的准确度,提出了一种迁移学习VGG-16并对其进行改进的图像分类方法,即NewVGG-16模型。首先从ImageNet数据集中选取十种不同类型的部分图像数据,进行去噪、标准化等预处理;接着迁移学习VGG-16模型同时将其改进,模型的... 为提高图像分类模型的准确度,提出了一种迁移学习VGG-16并对其进行改进的图像分类方法,即NewVGG-16模型。首先从ImageNet数据集中选取十种不同类型的部分图像数据,进行去噪、标准化等预处理;接着迁移学习VGG-16模型同时将其改进,模型的优化包括改进池化层为sort_pool2d,在每个卷积层后面添加BN层以增强规范性,并选用Adaboost分类器提升整体的分类性能。通过训练集实现模型参数的调整,用测试集检验其准确性。实验证明,该模型能有效提升图像分类的准确性和适用性,准确度可达到98.75%。 展开更多
关键词 VGG-16 卷积神经网络 图像分类 迁移学习 adaboost
下载PDF
改进的AdaBoost算法与SVM的组合分类器 被引量:8
19
作者 李亚军 刘晓霞 陈平 《计算机工程与应用》 CSCD 北大核心 2008年第32期140-142,共3页
提出了一种改进的AdaBoost算法与支持向量机组合的分类方法,用来处理多类别分类。采用规则抽样来解决支持向量机分类中正负样本的不平衡性,改进AdaBoost算法,使其在初始化时考虑样本分布稀疏的重要性,有利于稀有类样本的正确划分。实验... 提出了一种改进的AdaBoost算法与支持向量机组合的分类方法,用来处理多类别分类。采用规则抽样来解决支持向量机分类中正负样本的不平衡性,改进AdaBoost算法,使其在初始化时考虑样本分布稀疏的重要性,有利于稀有类样本的正确划分。实验结果表明,此方法与标准支持向量机分类器相比,泛化性能有一定程度的提高。 展开更多
关键词 adaboost 支持向量机 组合分类器 规则抽样
下载PDF
AdaBoost算法的推广——一组集成学习算法 被引量:9
20
作者 付忠良 赵向辉 +1 位作者 苗青 姚宇 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2010年第6期91-98,共8页
针对AdaBoost算法只适合于不稳定学习算法这一不足,基于增加新分类器总是希望降低集成分类器训练错误率这一思想,提出了利用样本权值来调整样本类中心的方法,使AdaBoost算法可以与一些稳定的学习算法结合成新的集成学习算法,如动态调整... 针对AdaBoost算法只适合于不稳定学习算法这一不足,基于增加新分类器总是希望降低集成分类器训练错误率这一思想,提出了利用样本权值来调整样本类中心的方法,使AdaBoost算法可以与一些稳定的学习算法结合成新的集成学习算法,如动态调整样本属性中心的集成学习算法、基于加权距离度量分类的集成学习算法和动态组合样本属性的集成学习算法,大大拓展了AdaBoost算法适用范围。针对AdaBoost算法的组合系数和样本权值调整策略是间接实现降低训练错误率目标,提出了直接面向目标的集成学习算法。在UCI数据上的实验与分析表明,提出的AdaBoost推广算法不仅有效,而且部分算法比AdaBoost算法效果更好。 展开更多
关键词 集成学习 adaboost 分类器组合 弱学习定理
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部