为满足自主研发滤棒成型机组的需要,对ZL29滤棒成型机组滤棒加速轮轮廓参数的设计方法进行了研究。通过对滤棒加速原理进行归纳分析,对滤棒加速作了运动学分析计算,得出了速度和加速度规律,并提出了一种加速轮轮廓参数设计的计算方法。...为满足自主研发滤棒成型机组的需要,对ZL29滤棒成型机组滤棒加速轮轮廓参数的设计方法进行了研究。通过对滤棒加速原理进行归纳分析,对滤棒加速作了运动学分析计算,得出了速度和加速度规律,并提出了一种加速轮轮廓参数设计的计算方法。以100,120和132 mm 3种滤棒长度为例进行计算,并将计算结果与德国Hauni公司提供的设计数据对照。结果表明:计算结果与设计数据良好吻合,验证了该计算方法的正确性。该设计方法可用于滤棒成型机组的研发设计。展开更多
As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the di...As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.展开更多
文摘为满足自主研发滤棒成型机组的需要,对ZL29滤棒成型机组滤棒加速轮轮廓参数的设计方法进行了研究。通过对滤棒加速原理进行归纳分析,对滤棒加速作了运动学分析计算,得出了速度和加速度规律,并提出了一种加速轮轮廓参数设计的计算方法。以100,120和132 mm 3种滤棒长度为例进行计算,并将计算结果与德国Hauni公司提供的设计数据对照。结果表明:计算结果与设计数据良好吻合,验证了该计算方法的正确性。该设计方法可用于滤棒成型机组的研发设计。
基金supported by the National Natural Science Foundation of China(52075032)the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.(K2022J023).
文摘As a key safety component of the high-speed train, fatigue fracture of the axle would lead to major accidents such as derailment or overturning. The complexity of the axle dynamic stress test seriously enhances the difficulty of axle fatigue damage analysis. In this paper, the dynamic stress test of the high-speed train axle was carried out,the axle box acceleration was monitored on-track during the test, and the relationship between the axle stress spectrum and acceleration was analyzed on-track. The results show that the relationships between the axle equivalent stresses and the Root Mean Square(RMS) values of the axle box vertical acceleration and lateral acceleration exhibit a strong joint probability density distribution. The concept of the virtual surface density of wheel-rail contact is also proposed to realize the purpose of using axle box acceleration to deduce axle equivalent force. The results quantify the relationship between axle box acceleration and axle equivalent force, provide a new method for predicting the axle damage using the acceleration RMS values, and open up a new approach for structural health monitoring of high-speed train axles.