NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the ...NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers.展开更多
This study aims to develop collagen-based hemostatic materials. The sheet-shaped collagen sponge was manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a...This study aims to develop collagen-based hemostatic materials. The sheet-shaped collagen sponge was manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a composition ratio of 2/1. The both sides or one side of sponge was treated with ultraviolet (UV) irradiation for 15 minutes to introduce intermolecular crosslinks between collagen molecules. The elution behavior of collagen sponge was investigated by immersing the sponge in water for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge showed very slow elution properties. On the other hand, the single-sided UV-irradiated sponge showed initially fast elution and subsequent very slow elution properties. Such initially fast elution of collagen molecules from the surface without UV-irradiation allows an adhesion of collagen sponge to the wound surface and results in hemostatic effect. In addition, the water absorption and retention properties of sponge were investigated by placing the hydrated sponge on a mesh for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge absorbed 81 times more water than own weight and showed a value of 45 times even after 7 days. The single-sided UV-irradiated sponge absorbed 80 times more water than own weight and showed a value of 39 times even after 7 days. The sponge with high water absorption and retention properties allows a wound healing effect because such sponge can absorb large amounts of blood plasma and exudates containing various cell growth factors. The double-sided UV-irradiated sponge is a good candidate for the wound dressing. On the other hand, the single-sided UV-irradiated sponge is a good candidate for the hemostatic material.展开更多
基金supported by research pro-grams of National Natural Science Foundation of China(Nos.52101274 and 52377026)Natural Science Foundation of Shandong Province,China(Nos.ZR2020QE011 and ZR2022ME089)+4 种基金Taishan Scholars and Young Experts Pro-gram of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Fin-ancial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams),Youth Top Talent Foundation of Yantai University(No.2219008)Graduate Innovation Foundation of Yantai University(No.GIFYTU2240)College Student Innovation and Entrepreneurship Training Program Project(No.202311066088).
文摘NiMZn/C@melamine sponge-derived carbon(MSDC)composites(M=Co,Fe,and Mn)were prepared by a vacuum pump-ing solution method followed by carbonization.A large number of carbon nanotubes(CNTs)homogeneously attached to the surfaces of the three-dimensional cross-linked of the sponge-derived carbon in the NiCoZn/C@MSDC composite,and CNTs were detected in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.Ni_(3)ZnC_(0.7),Ni_(3)Fe,and MnO in-situ formed in the NiFeZn/C@MSDC and NiMnZn/C@MSDC composites.The CNTs in the NiCoZn/C@MSDC composite efficiently modulated its complex permittivity.Thus,the composite exhibited the best performance among the composites,with the minimum reflection loss(RL_(min))of-33.1 dB at 18 GHz and thickness of 1.4 mm.The bandwidth for RL of≤-10 dB was up to 5.04 GHz at the thickness of 1.7 mm and loading of 25wt%.The op-timized impedance matching,enhanced interfacial and dipole polarization,remarkable conduction loss,and multiple reflections and scat-tering of the incident microwaves improved the microwave absorption performance.The effects of Co,Ni,and Fe on the phase and mor-phology provided an alternative way for developing highly efficient and broadband microwave absorbers.
文摘This study aims to develop collagen-based hemostatic materials. The sheet-shaped collagen sponge was manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a composition ratio of 2/1. The both sides or one side of sponge was treated with ultraviolet (UV) irradiation for 15 minutes to introduce intermolecular crosslinks between collagen molecules. The elution behavior of collagen sponge was investigated by immersing the sponge in water for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge showed very slow elution properties. On the other hand, the single-sided UV-irradiated sponge showed initially fast elution and subsequent very slow elution properties. Such initially fast elution of collagen molecules from the surface without UV-irradiation allows an adhesion of collagen sponge to the wound surface and results in hemostatic effect. In addition, the water absorption and retention properties of sponge were investigated by placing the hydrated sponge on a mesh for a predetermined time and then by measuring the weight change. The double-sided UV-irradiated sponge absorbed 81 times more water than own weight and showed a value of 45 times even after 7 days. The single-sided UV-irradiated sponge absorbed 80 times more water than own weight and showed a value of 39 times even after 7 days. The sponge with high water absorption and retention properties allows a wound healing effect because such sponge can absorb large amounts of blood plasma and exudates containing various cell growth factors. The double-sided UV-irradiated sponge is a good candidate for the wound dressing. On the other hand, the single-sided UV-irradiated sponge is a good candidate for the hemostatic material.