Friction stir welding achieves the weld in solid phase by locally introducing frictional heating and plastic flow arising from rotation of the welding tool, which results in changes in the local microstructure of magn...Friction stir welding achieves the weld in solid phase by locally introducing frictional heating and plastic flow arising from rotation of the welding tool, which results in changes in the local microstructure of magnesium alloy. The purpose in the paper is to study the microstructures of friction stir welded AZ31 magnesium alloy. Residual microstructures, including dynamic re-crystallization zone and nugget structures have been systematically investigated utilizing optical microscopy (OM), scanning electric microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and micro-hardness. AZ31 magnesium alloy has been successfully friction stir welded and exhibits the variations of microstructure including dynamically recrystallized, equaxied grains in the weld nugget. Residual hardness in the nugget was found slightly lower than the parent but not too obvious.展开更多
基金supported by the National High Technique Development Foundation of China(No.2002AA331160).
文摘Friction stir welding achieves the weld in solid phase by locally introducing frictional heating and plastic flow arising from rotation of the welding tool, which results in changes in the local microstructure of magnesium alloy. The purpose in the paper is to study the microstructures of friction stir welded AZ31 magnesium alloy. Residual microstructures, including dynamic re-crystallization zone and nugget structures have been systematically investigated utilizing optical microscopy (OM), scanning electric microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and micro-hardness. AZ31 magnesium alloy has been successfully friction stir welded and exhibits the variations of microstructure including dynamically recrystallized, equaxied grains in the weld nugget. Residual hardness in the nugget was found slightly lower than the parent but not too obvious.