The M-estimate of parameters in the errors-in-variables (EV) model Y =xτβ0+∈,X =x+u ((∈,uτ)τ is a (p+1)-dimensional spherical error, Coy[(∈, uτ)τ] =σ2Ip+1)being considered. The M-estimate βn,, of β0 under ...The M-estimate of parameters in the errors-in-variables (EV) model Y =xτβ0+∈,X =x+u ((∈,uτ)τ is a (p+1)-dimensional spherical error, Coy[(∈, uτ)τ] =σ2Ip+1)being considered. The M-estimate βn,, of β0 under a general ρ(·) function and the estimateof σ2 are given, the strong consistency and asymptotic normality of βn as well as are obtained. The conditions for the ρ(·) function in this paper are similar to that of linearexpression of M-estimates in the linear regression model.展开更多
In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,...In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent.展开更多
Some maximal moment inequalities for partial sums of the strong mixing random variable sequence are established. These inequalities use moment sums as up-boundary and improve the corre- sponding ones obtained by Shao ...Some maximal moment inequalities for partial sums of the strong mixing random variable sequence are established. These inequalities use moment sums as up-boundary and improve the corre- sponding ones obtained by Shao (1996). To show the application of the inequalities, we apply them to discuss the asymptotic normality of the weight function estimate for the fixed design regression model.展开更多
文摘The M-estimate of parameters in the errors-in-variables (EV) model Y =xτβ0+∈,X =x+u ((∈,uτ)τ is a (p+1)-dimensional spherical error, Coy[(∈, uτ)τ] =σ2Ip+1)being considered. The M-estimate βn,, of β0 under a general ρ(·) function and the estimateof σ2 are given, the strong consistency and asymptotic normality of βn as well as are obtained. The conditions for the ρ(·) function in this paper are similar to that of linearexpression of M-estimates in the linear regression model.
基金supported by the National Natural Science Foundation of China(Grant No.10471136)Ph.D.Program Foundation of Ministry of Education of China and Special Foundation of the Chinese Academy of Science and USTC.
文摘In a generalized linear model with q x 1 responses, the bounded and fixed (or adaptive) p × q regressors Zi and the general link function, under the most general assumption on the minimum eigenvalue of ZiZ'i,the moment condition on responses as weak as possible and the other mild regular conditions, we prove that the maximum quasi-likelihood estimates for the regression parameter vector are asymptotically normal and strongly consistent.
基金the Natural Science Foundation of China(10161004)the Natural Science Foundation of Guangxi(04047033)
文摘Some maximal moment inequalities for partial sums of the strong mixing random variable sequence are established. These inequalities use moment sums as up-boundary and improve the corre- sponding ones obtained by Shao (1996). To show the application of the inequalities, we apply them to discuss the asymptotic normality of the weight function estimate for the fixed design regression model.