期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Physical Mechanism of Formation of the Bimodal Structure in the Meiyu Front System 被引量:4
1
作者 崔晓鹏 高守亭 +2 位作者 宗志平 刘文明 李小凡 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第12期3218-3220,共3页
The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Melyu front syst... The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Melyu front system considerably results from atmospheric moisture gradients, though atmospheric temperature gradients are also not negligible. According to the definition of equivalent potential temperature, and by scale analysis, we find that atmospheric equivalent potential temperature gradients, which could be regarded as an indicator of the Meiyu front system, could be mainly attributed to the variations of atmospheric potential temperature gradients with a scaling factor of 1 and moisture gradients multiplied by a scaling factor of an order of about 2.5 × 10^3, which means that small variations of atmospheric moisture gradients could lead to large variations of equivalent potential temperature gradients, and thus large variations of the Meiyu front system. Quantitative diagnostics with a mesoscale simulation data in the vicinity of the Meiyu front system show that moisture gradients contribute to equivalent potential temperature gradients more than potential temperature gradients. 展开更多
关键词 SLANTWISE VORTICITY DEVELOPMENT MOIST POTENTIAL VORTICITY asiansummer monsoon EAST CHINA SEA SCALE STRUCTURE PART II REGION CONVERGENCE TRANSPORT FEATURES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部