BGP monitors are currently the main data resource of AS-level topology measurement,and the integrity of measurement result is limited to the location of such BGP monitors.However,there is currently no work to conduct ...BGP monitors are currently the main data resource of AS-level topology measurement,and the integrity of measurement result is limited to the location of such BGP monitors.However,there is currently no work to conduct a comprehensive study of the range of measurement results for a single BGP monitor.In this paper,we take the first step to describe the observed topology of each BGP monitor.To that end,we first investigate the construction and theoretical up-limit of the measured topology of a BGP monitor based on the valley-free model,then we evaluate the individual parts of the measured topology by comparing such theoretical results with the actually observed data.We find that:1)for more than 90%of the monitors,the actually observed peer-peer links merely takes a small part of all theoretical visible links;2)increasing the BGP monitors in the same AS may improve the measurement result,but with limited improvement;and 3)deploying multiple BGP monitors in different ASs can significantly improve the measurement results,but non-local BGP monitors can hardly replace the local AS BGP monitors.We also propose a metric for monitor selection optimization,and prove its effectiveness with experiment evaluation.展开更多
Studying the topology of infrastructure communication networks(e.g., the Internet) has become a means to understand and develop complex systems. Therefore, investigating the evolution of Internet network topology migh...Studying the topology of infrastructure communication networks(e.g., the Internet) has become a means to understand and develop complex systems. Therefore, investigating the evolution of Internet network topology might elucidate disciplines governing the dynamic process of complex systems. It may also contribute to a more intelligent communication network framework based on its autonomous behavior. In this paper, the Internet Autonomous Systems(ASes) topology from 1998 to 2013 was studied by deconstructing and analysing topological entities on three different scales(i.e., nodes,edges and 3 network components: single-edge component M1, binary component M2 and triangle component M3). The results indicate that: a) 95% of the Internet edges are internal edges(as opposed to external and boundary edges); b) the Internet network consists mainly of internal components, particularly M2 internal components; c) in most cases, a node initially connects with multiple nodes to form an M2 component to take part in the network; d) the Internet network evolves to lower entropy. Furthermore, we find that, as a complex system, the evolution of the Internet exhibits a behavioral series,which is similar to the biological phenomena concerned with the study on metabolism and replication. To the best of our knowledge, this is the first study of the evolution of the Internet network through analysis of dynamic features of its nodes,edges and components, and therefore our study represents an innovative approach to the subject.展开更多
基金This work was supported in part by the Guangdong Province Key Research and Development Plan(Grant No.2019B010137004)the National Key research and Development Plan(Grant No.2018YFB0803504).
文摘BGP monitors are currently the main data resource of AS-level topology measurement,and the integrity of measurement result is limited to the location of such BGP monitors.However,there is currently no work to conduct a comprehensive study of the range of measurement results for a single BGP monitor.In this paper,we take the first step to describe the observed topology of each BGP monitor.To that end,we first investigate the construction and theoretical up-limit of the measured topology of a BGP monitor based on the valley-free model,then we evaluate the individual parts of the measured topology by comparing such theoretical results with the actually observed data.We find that:1)for more than 90%of the monitors,the actually observed peer-peer links merely takes a small part of all theoretical visible links;2)increasing the BGP monitors in the same AS may improve the measurement result,but with limited improvement;and 3)deploying multiple BGP monitors in different ASs can significantly improve the measurement results,but non-local BGP monitors can hardly replace the local AS BGP monitors.We also propose a metric for monitor selection optimization,and prove its effectiveness with experiment evaluation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671142)
文摘Studying the topology of infrastructure communication networks(e.g., the Internet) has become a means to understand and develop complex systems. Therefore, investigating the evolution of Internet network topology might elucidate disciplines governing the dynamic process of complex systems. It may also contribute to a more intelligent communication network framework based on its autonomous behavior. In this paper, the Internet Autonomous Systems(ASes) topology from 1998 to 2013 was studied by deconstructing and analysing topological entities on three different scales(i.e., nodes,edges and 3 network components: single-edge component M1, binary component M2 and triangle component M3). The results indicate that: a) 95% of the Internet edges are internal edges(as opposed to external and boundary edges); b) the Internet network consists mainly of internal components, particularly M2 internal components; c) in most cases, a node initially connects with multiple nodes to form an M2 component to take part in the network; d) the Internet network evolves to lower entropy. Furthermore, we find that, as a complex system, the evolution of the Internet exhibits a behavioral series,which is similar to the biological phenomena concerned with the study on metabolism and replication. To the best of our knowledge, this is the first study of the evolution of the Internet network through analysis of dynamic features of its nodes,edges and components, and therefore our study represents an innovative approach to the subject.