Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate mode...Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market.展开更多
Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values ...Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values at specific stations is key for environmental and agricultural decision making. This research developed Autoregressive Integrated Moving Average (ARIMA) models for selected stations with Integrated component and Autoregressive Moving Average (ARMA) for selected stations without Integrated component at Louisiana State. The ARIMA module is represented as ARIMA(p, d, q)(P,D,Q). The selected lag order for the Autoregressive (AR) component is represented with p and P for seasonal AR component, while the integrated form (number of times data were differenced) is d and D for seasonal differencing, and the Moving Average (MA) lag order is q and Q for seasonal MA component. Data from 1950 to 2020 were employed in this research. Results of the analysis indicated that Baton Rouge (ARIMA (0,1,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Abbeville (ARMA (0,0,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Monroe Regional (ARMA (0,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Airport (ARMA (1,0,0) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Alexandria (ARMA (1,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Logansport (ARIMA (0,1,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Audubon (ARMA (1,0,0) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Lake Charles Airport (ARMA (2,0,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span styl展开更多
In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper intr...In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model.展开更多
Zambia largely depends on the international second-hand car (SHC) market for their motor vehicle supply. The importation of Second hand Cars in Zambia presents a time series problem. The data used in this paper is mon...Zambia largely depends on the international second-hand car (SHC) market for their motor vehicle supply. The importation of Second hand Cars in Zambia presents a time series problem. The data used in this paper is monthly data on SHC importation from 1st January, 2014 to 31st December, 2016. Data was analyzed using Exponential Smoothing (ES) and Autoregressive Integrated Moving Average (ARIMA) models. The results showed that ARIMA (2, 1, 2) was the best fit for the SHC importation since its errors were smaller than those of the SES, DES and TES. The four error measures used were Root-mean-square error (RMSE), Mean absolute error (MAE), Mean percentage error (MPE) and Mean absolute percentage error (MAPE). The forecasts were also produced using the ARIMA (2, 1, 2) model for the next 18 months from January 2017. Although there is percentage increase of 90.6% from November 2015 to December 2016, the SHC importation generally is on the decrease in Zambia with percentage change of 59.5% from January 2014 to December 2016. The forecasts also show a gradual percentage decrease of 1.12% by June 2018. These results are more useful to policy and decision makers of Government departments such as Zambia Revenue Authority (ZRA) and Road Development Agency (RDA) in a bid to plan and execute their duties effectively.展开更多
Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent t...Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent to contribute more efforts on developing appropriate price forecasting scheme to maximize their profits. This paper introduces a time series method developed by Box-Jenkins that applies autoregressive integrated moving average (ARIMA) model to address a best-fitted time-domain model based on a time series of historical price data. Using the model’s parameters determined from the stationarized time series of prices, the price forecasts in UK electricity market for 1 step ahead are estimated in the next day and the next week. The most suitable models are selected for them separately after comparing their prediction outcomes. The data of historical prices are obtained from UK three-month Reference Price Data from April 1st to July7th 2010.展开更多
Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, ec...Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, economics, etc.). In the context of the analysis and visualisation of large amounts of data extracted using Data Mining on a temporary basis (time-series), free software such as R has appeared in the international context as a perfect inexpensive and efficient tool of exploitation and visualisation of time series. This has allowed the development of models, which help to extract the most relevant information from large volumes of data. In this regard, a script has been developed with the goal of implementing ARIMA models, showing these as useful and quick mechanisms for the extraction, analysis and visualisation of large data volumes, in addition to presenting the great advantage of being applied in multiple branches of knowledge from economy, demography, physics, mathematics and fisheries among others. Therefore, ARIMA models appear as a Data Mining technique, offering reliable, robust and high-quality results, to help validate and sustain the research carried out.展开更多
文摘Time-series-based forecasting is essential to determine how past events affect future events. This paper compares the performance accuracy of different time-series models for oil prices. Three types of univariate models are discussed: the exponential smoothing (ES), Holt-Winters (HW) and autoregressive intergrade moving average (ARIMA) models. To determine the best model, six different strategies were applied as selection criteria to quantify these models’ prediction accuracies. This comparison should help policy makers and industry marketing strategists select the best forecasting method in oil market. The three models were compared by applying them to the time series of regular oil prices for West Texas Intermediate (WTI) crude. The comparison indicated that the HW model performed better than the ES model for a prediction with a confidence interval of 95%. However, the ARIMA (2, 1, 2) model yielded the best results, leading us to conclude that this sophisticated and robust model outperformed other simple yet flexible models in oil market.
文摘Precipitation is very important for both the environment and its inhabitants. Agricultural activities mostly depend on precipitation and its availability. Therefore, the ability to predict future precipitation values at specific stations is key for environmental and agricultural decision making. This research developed Autoregressive Integrated Moving Average (ARIMA) models for selected stations with Integrated component and Autoregressive Moving Average (ARMA) for selected stations without Integrated component at Louisiana State. The ARIMA module is represented as ARIMA(p, d, q)(P,D,Q). The selected lag order for the Autoregressive (AR) component is represented with p and P for seasonal AR component, while the integrated form (number of times data were differenced) is d and D for seasonal differencing, and the Moving Average (MA) lag order is q and Q for seasonal MA component. Data from 1950 to 2020 were employed in this research. Results of the analysis indicated that Baton Rouge (ARIMA (0,1,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Abbeville (ARMA (0,0,1) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Monroe Regional (ARMA (0,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Airport (ARMA (1,0,0) (0,0,2)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Alexandria (ARMA (1,0,1) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Logansport (ARIMA (0,1,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), New Orleans Audubon (ARMA (1,0,0) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span style="font-family:Verdana;">), Lake Charles Airport (ARMA (2,0,2) (0,0,0)</span><sub><span style="font-family:Verdana;">12</span></sub><span styl
文摘In power market, electricity price forecasting provides significant information which can help the electricity market participants to prepare corresponding bidding strategies to maximize their profits. This paper introduces the models of autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) which are applied to the price forecasts for up to 3 steps 8 weeks ahead in the UK electricity market. The half hourly data of historical prices are obtained from UK Reference Price Data from March 22nd to July 14th 2010 and the predictions are derived from a sliding training window with a length of 8 weeks. The ARIMA with various AR and MA orders and the ANN with different numbers of delays and neurons have been established and compared in terms of the root mean square errors (RMSEs) of price forecasts. The experimental results illustrate that the ARIMA (4,1,2) model gives greater improvement over persistence than the ANN (20 neurons, 4 delays) model.
文摘Zambia largely depends on the international second-hand car (SHC) market for their motor vehicle supply. The importation of Second hand Cars in Zambia presents a time series problem. The data used in this paper is monthly data on SHC importation from 1st January, 2014 to 31st December, 2016. Data was analyzed using Exponential Smoothing (ES) and Autoregressive Integrated Moving Average (ARIMA) models. The results showed that ARIMA (2, 1, 2) was the best fit for the SHC importation since its errors were smaller than those of the SES, DES and TES. The four error measures used were Root-mean-square error (RMSE), Mean absolute error (MAE), Mean percentage error (MPE) and Mean absolute percentage error (MAPE). The forecasts were also produced using the ARIMA (2, 1, 2) model for the next 18 months from January 2017. Although there is percentage increase of 90.6% from November 2015 to December 2016, the SHC importation generally is on the decrease in Zambia with percentage change of 59.5% from January 2014 to December 2016. The forecasts also show a gradual percentage decrease of 1.12% by June 2018. These results are more useful to policy and decision makers of Government departments such as Zambia Revenue Authority (ZRA) and Road Development Agency (RDA) in a bid to plan and execute their duties effectively.
文摘Electricity price forecasting has become an important aspect of promoting competition and safeguarding the interests of participants in electricity market. As market participants, both producers and consumers intent to contribute more efforts on developing appropriate price forecasting scheme to maximize their profits. This paper introduces a time series method developed by Box-Jenkins that applies autoregressive integrated moving average (ARIMA) model to address a best-fitted time-domain model based on a time series of historical price data. Using the model’s parameters determined from the stationarized time series of prices, the price forecasts in UK electricity market for 1 step ahead are estimated in the next day and the next week. The most suitable models are selected for them separately after comparing their prediction outcomes. The data of historical prices are obtained from UK three-month Reference Price Data from April 1st to July7th 2010.
文摘Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, economics, etc.). In the context of the analysis and visualisation of large amounts of data extracted using Data Mining on a temporary basis (time-series), free software such as R has appeared in the international context as a perfect inexpensive and efficient tool of exploitation and visualisation of time series. This has allowed the development of models, which help to extract the most relevant information from large volumes of data. In this regard, a script has been developed with the goal of implementing ARIMA models, showing these as useful and quick mechanisms for the extraction, analysis and visualisation of large data volumes, in addition to presenting the great advantage of being applied in multiple branches of knowledge from economy, demography, physics, mathematics and fisheries among others. Therefore, ARIMA models appear as a Data Mining technique, offering reliable, robust and high-quality results, to help validate and sustain the research carried out.