利用Maxwell电磁仿真软件计算变压器在稳定满载运行过程中绕组损耗情况,将得出的损耗数据转换为发热载荷输入ANSYS CFX中对该35 k V油浸式变压器绕组的温度分布情况进行研究。从60,120 min两个时间段对绕组的温度分布进行仿真分析,找出...利用Maxwell电磁仿真软件计算变压器在稳定满载运行过程中绕组损耗情况,将得出的损耗数据转换为发热载荷输入ANSYS CFX中对该35 k V油浸式变压器绕组的温度分布情况进行研究。从60,120 min两个时间段对绕组的温度分布进行仿真分析,找出最热点分布以及相应的温度值,得出变压器在运行120 min时,为变压器最热点温度时刻,低压绕组最热点位于B相绕组,为75.5℃,高压绕组最热点温度位于C相绕组,为65.4℃;变压器绕组中部温度整体较上部和下部高,且随着变压器工作时间延长,变压器整体温度升高;变压器整体低压绕组温度较高压绕组温度高。展开更多
In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of fre...In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable.展开更多
文摘In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable.