针对2~4 GHz的超宽频带,提出了一种宽带接收机的前端设计方法,其中包括射频信道设计、频率合成器的设计以及基带电路设计。鉴于小型化的设计思想,射频前端采用零中频接收机的架构,使用LTCC滤波器实现噪声系数优于8 d B,输出三阶截断点优...针对2~4 GHz的超宽频带,提出了一种宽带接收机的前端设计方法,其中包括射频信道设计、频率合成器的设计以及基带电路设计。鉴于小型化的设计思想,射频前端采用零中频接收机的架构,使用LTCC滤波器实现噪声系数优于8 d B,输出三阶截断点优于27 d Bm(低噪声模式下)。频率合成器采用集成VCO的锁相环芯片ADF4351,实现单边带相位噪声优于-110 d Bc/Hz@200 k Hz。基带电路采用正交解调器ADL5380和12位双通道AD转换器AD9238,可实现带宽为20 MHz的I/Q双路同时解调。通过FPGA或DSP处理,可广泛用于便携式小型化的监测接收机或通信接收机。展开更多
以数字锁相环ADF4351和Xilinx公司的Spartan-6系FPGA为主要元件设计了一个合成频率源。重点讨论了ADF4351的工作原理、两者之间的SPI通信过程、电路板的设计过程,并给出了关键的控制代码和性能测试结果。该频率源具有结构简单、成本低...以数字锁相环ADF4351和Xilinx公司的Spartan-6系FPGA为主要元件设计了一个合成频率源。重点讨论了ADF4351的工作原理、两者之间的SPI通信过程、电路板的设计过程,并给出了关键的控制代码和性能测试结果。该频率源具有结构简单、成本低廉、代码占用资源少、易于维护和升级等特点,在100~700 MHz的宽频范围内可输出SFDR为40 d B左右的稳定波形。展开更多
主要介绍了一种宽频带、相位噪声低、杂散抑制度高的频率合成系统。该设计使用了频率合成芯片ADF4351和高速可编程芯片FPGA来完成自适应控制,不仅实现了输出频率范围35 MHz^4.400 GHz、功率可调范围为-4 d Bm^5 d Bm的低相噪稳定的频率...主要介绍了一种宽频带、相位噪声低、杂散抑制度高的频率合成系统。该设计使用了频率合成芯片ADF4351和高速可编程芯片FPGA来完成自适应控制,不仅实现了输出频率范围35 MHz^4.400 GHz、功率可调范围为-4 d Bm^5 d Bm的低相噪稳定的频率源,同时还实现了对全频带频率的转换时间和跳频范围的智能控制。展开更多
文摘针对2~4 GHz的超宽频带,提出了一种宽带接收机的前端设计方法,其中包括射频信道设计、频率合成器的设计以及基带电路设计。鉴于小型化的设计思想,射频前端采用零中频接收机的架构,使用LTCC滤波器实现噪声系数优于8 d B,输出三阶截断点优于27 d Bm(低噪声模式下)。频率合成器采用集成VCO的锁相环芯片ADF4351,实现单边带相位噪声优于-110 d Bc/Hz@200 k Hz。基带电路采用正交解调器ADL5380和12位双通道AD转换器AD9238,可实现带宽为20 MHz的I/Q双路同时解调。通过FPGA或DSP处理,可广泛用于便携式小型化的监测接收机或通信接收机。
文摘以数字锁相环ADF4351和Xilinx公司的Spartan-6系FPGA为主要元件设计了一个合成频率源。重点讨论了ADF4351的工作原理、两者之间的SPI通信过程、电路板的设计过程,并给出了关键的控制代码和性能测试结果。该频率源具有结构简单、成本低廉、代码占用资源少、易于维护和升级等特点,在100~700 MHz的宽频范围内可输出SFDR为40 d B左右的稳定波形。
文摘主要介绍了一种宽频带、相位噪声低、杂散抑制度高的频率合成系统。该设计使用了频率合成芯片ADF4351和高速可编程芯片FPGA来完成自适应控制,不仅实现了输出频率范围35 MHz^4.400 GHz、功率可调范围为-4 d Bm^5 d Bm的低相噪稳定的频率源,同时还实现了对全频带频率的转换时间和跳频范围的智能控制。