In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind f...In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.展开更多
Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model ...Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.展开更多
The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC vo...The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC voltage levels,the FPES has adopted a novel topology integrating modular multilevel converter(MMC)and four-winding medium frequency transformer(FWMFT)based multiport DC-DC converter,which can significantly reduce capacitance in each sub-module(SM)of a MMC and also save space and cost.In this paper,in order to accelerate speed of electromagnetic transient(EMT)simulations of FPES based hybrid AC/DC distribution systems,an averaged-value model(AVM)is proposed for efficient and accurate representation of FPES.Assume that all SM capacitor voltages are perfectly balanced in the MMC,then the MMC behavior can be modeled using controlled voltage sources based on modulation voltages from control systems.In terms of the averaged current transfer characteristics among the windings of the FWMFT,we consider that all multiport DC-DC converters are controlled with the same dynamics,a lumped averaged model using controlled current and voltage sources has been developed for these four-port DC-DC converters connected to the upper or lower arms of the MMC.The presented FPES AVM model has been tested and validated by comparison with a detailed IGBT-based EMT model.Results show that the AVM is significantly more efficient while maintaining its accuracy in an EMT simulation.展开更多
To enhance the cost-effectiveness of bulk hybrid AC-DC power systems and promote wind consumption,this paper proposes a two-stage risk-based robust reserve scheduling(RRRS)model.Different from traditional robust optim...To enhance the cost-effectiveness of bulk hybrid AC-DC power systems and promote wind consumption,this paper proposes a two-stage risk-based robust reserve scheduling(RRRS)model.Different from traditional robust optimization,the proposed model applies an adjustable uncertainty set rather than a fixed one.Thereby,the operational risk is optimized together with the dispatch schedules,with a reasonable admissible region of wind power obtained correspondingly.In addition,both the operational base point and adjustment capacity of tielines are optimized in the RRRS model,which enables reserve sharing among the connected areas to handle the significant wind uncertainties.Based on the alternating direction method of multipliers(ADMM),a fully distributed framework is presented to solve the RRRS model in a distributed way.A dynamic penalty factor adjustment strategy(DPA)is also developed and applied to enhance its convergence properties.Since only limited information needs to be exchanged during the solution process,the communication burden is reduced and regional information is protected.Case studies on the 2-area 12-bus system and 3-area 354-bus system illustrate the effectiveness of the proposed model and approach.展开更多
This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid pow...This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.展开更多
基金This study was supported in part by the National Key R&D Program of China(2017YFB0902100).
文摘In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system.
基金supported by the National Key Research and Development Program of China(2017YFB0903300).
文摘Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.
基金This work was supported in part by the National Nature Science Foundation of China(51977142)。
文摘The concept of a flexible power electronics substation(FPES)was first applied in the Zhangbei DC distribution network demonstration project.As a multi-port power electronics transformer(PET)with different AC and DC voltage levels,the FPES has adopted a novel topology integrating modular multilevel converter(MMC)and four-winding medium frequency transformer(FWMFT)based multiport DC-DC converter,which can significantly reduce capacitance in each sub-module(SM)of a MMC and also save space and cost.In this paper,in order to accelerate speed of electromagnetic transient(EMT)simulations of FPES based hybrid AC/DC distribution systems,an averaged-value model(AVM)is proposed for efficient and accurate representation of FPES.Assume that all SM capacitor voltages are perfectly balanced in the MMC,then the MMC behavior can be modeled using controlled voltage sources based on modulation voltages from control systems.In terms of the averaged current transfer characteristics among the windings of the FWMFT,we consider that all multiport DC-DC converters are controlled with the same dynamics,a lumped averaged model using controlled current and voltage sources has been developed for these four-port DC-DC converters connected to the upper or lower arms of the MMC.The presented FPES AVM model has been tested and validated by comparison with a detailed IGBT-based EMT model.Results show that the AVM is significantly more efficient while maintaining its accuracy in an EMT simulation.
基金supported by the National Key Research and Development Program of China (2016YFB0900100)the State Key Program of National Natural Science Foundation of China (51537010)the project of State Grid Corporation of China (52110418000T)。
文摘To enhance the cost-effectiveness of bulk hybrid AC-DC power systems and promote wind consumption,this paper proposes a two-stage risk-based robust reserve scheduling(RRRS)model.Different from traditional robust optimization,the proposed model applies an adjustable uncertainty set rather than a fixed one.Thereby,the operational risk is optimized together with the dispatch schedules,with a reasonable admissible region of wind power obtained correspondingly.In addition,both the operational base point and adjustment capacity of tielines are optimized in the RRRS model,which enables reserve sharing among the connected areas to handle the significant wind uncertainties.Based on the alternating direction method of multipliers(ADMM),a fully distributed framework is presented to solve the RRRS model in a distributed way.A dynamic penalty factor adjustment strategy(DPA)is also developed and applied to enhance its convergence properties.Since only limited information needs to be exchanged during the solution process,the communication burden is reduced and regional information is protected.Case studies on the 2-area 12-bus system and 3-area 354-bus system illustrate the effectiveness of the proposed model and approach.
文摘This paper presents performance analysis on hybrid AC/DC microgrid networks for residential home cluster. The design of the proposed microgrid includes comprehensive types of Distributed Generators (DGs) as hybrid power sources (wind, Photovoltaic (PV) solar cell, battery, fuel cell). Details about each DG dynamic modeling are presented and discussed. The customers in home cluster can be connected in both of the operating modes: islanded to the microgrid or connected to utility grid. Each DG has appended control system with its modeling that will be discussed to control DG performance. The wind turbine will be controlled by AC control system within three sub-control systems: 1) speed regulator and pitch control, 2) rotor side converter control, and 3) grid side converter control. The AC control structure is based on PLL, current regulator and voltage booster converter with using of photovoltaic Voltage Source Converter (VSC) and inverters to connect to the grid. The DC control system is mainly based on Maximum Power Point Tracking (MPPT) controller and boost converter connected to the PV array block and in order to control the system. The case study is used to analyze the performance of the proposed microgrid. The buses voltages, active power and reactive power responses are presented in both of grid-connected and islanded modes. In addition, the power factor, Total Harmonic Distortion (THD) and modulation index are calculated.