Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors,called A1 and A2A receptors.The adenosine A2A receptor(A2AR)antagonists have been c...Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors,called A1 and A2A receptors.The adenosine A2A receptor(A2AR)antagonists have been clinically pursued for the last 2 decades,leading to final approval of the istradefylline,an A2AR antagonist,for the treatment of OFF-Parkinson's disease(PD)patients.The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury(TBI),namely neuroprotection or improving cognition.In this review,we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment.We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity,and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation.Moreover,we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients.Collectively,the convergence of clinical,epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.展开更多
Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR)...Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury展开更多
基金supported by National Natural Science Foundation of China(81470250)National Natural Science Foundation of China(81270110)+2 种基金National Natural Science Foundation of China(81473406)Zhejiang Natural Science Foundation(Q16H010010)Science and Technology Project of Wenzhou City(Y20140048)~~
基金supported in part by the grants from the National Natural Science Foundation of China[grant numbers 81771176 for Zhao Y,82150710558 and 82151308 for Chen JF]by the Startup Funds from the Oujiang Laboratory (the Zhejiang Provincial Key Laboratory for Regenerative Medicine and Eye-Brain Disorders)[grant number OJQDSP2022007 for Chen JF]Wenzhou,China。
文摘Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors,called A1 and A2A receptors.The adenosine A2A receptor(A2AR)antagonists have been clinically pursued for the last 2 decades,leading to final approval of the istradefylline,an A2AR antagonist,for the treatment of OFF-Parkinson's disease(PD)patients.The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury(TBI),namely neuroprotection or improving cognition.In this review,we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment.We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity,and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation.Moreover,we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients.Collectively,the convergence of clinical,epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30971303).
文摘Background The amiloride-sensitive epithelial sodium channel a-subunit (a-ENaC) is an important factor for alveolar fluid clearance during acute lung injury. The relationship between adenosine receptor A2a (A2aAR) expressed in alveolar epithelial cells and aα-ENaC is poorly understood. We targeted the A2aAR in this study to investigate its role in the expression of αa-ENaC and in acute lung injury.Methods A549 cells were incubated with different concentrations of A2aAR agonist CGS-21680 and with 100 μmol/L CGS-21680 for various times. Rats were treated with lipopolysaccharide (LPS) after CGS-21680 was injected. Animals were sacrificed and tissue was harvested for evaluation of lung injury by analysis of the lung wet-to-dry weight ratio, lung permeability and myeloperoxidase activity. RT-PCR and Western blotting were used to determine the mRNA and protein expression levels of α-ENaC in A549 cells and alveolar type II epithelial cells.Results Both mRNA and protein levels of α-ENaC were markedly higher from 4 hours to 24 hours after exposure to 100μmol/L CGS-21680. There were significant changes from 0.1 umol/L to 100 μmol/L CGS-21680, with a positive correlation between increased concentrations of CGS-21680 and expression of α-ENaC. Treatment with CGS-21680during LPS induced lung injury protected the lung and promoted α-ENaC expression in the alveolar epithelial cells.Conclusion Activation of A2aAR has a protective effect during the lung injury, which may be beneficial to the prognosis of acute lung injury