针对传统的层次聚类算法每次迭代只将距离最小的那对类簇合并,容易受离群点影响,偏向于发现凸状或球状簇等缺点,受CURE算法启发,采用簇中固定数量代表点来代表簇对象进行距离的计算,并结合90_10规则,提出了一种改进的层次聚类算法REPBFC...针对传统的层次聚类算法每次迭代只将距离最小的那对类簇合并,容易受离群点影响,偏向于发现凸状或球状簇等缺点,受CURE算法启发,采用簇中固定数量代表点来代表簇对象进行距离的计算,并结合90_10规则,提出了一种改进的层次聚类算法REPBFC(REpresentative Points Based Fast Clustering),实验表明该算法是有效的。展开更多
文摘针对传统的层次聚类算法每次迭代只将距离最小的那对类簇合并,容易受离群点影响,偏向于发现凸状或球状簇等缺点,受CURE算法启发,采用簇中固定数量代表点来代表簇对象进行距离的计算,并结合90_10规则,提出了一种改进的层次聚类算法REPBFC(REpresentative Points Based Fast Clustering),实验表明该算法是有效的。