Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfu...Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension- reduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.展开更多
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate...The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.展开更多
This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and...This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.展开更多
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ...CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions 展开更多
Based on a cloud model and the four-dimensional variational (4DVAR) dataassimilation method developed by Sun and Crook (1997), simulated experiments of dynamical andmicrophysical retrieval from Doppler radar data were...Based on a cloud model and the four-dimensional variational (4DVAR) dataassimilation method developed by Sun and Crook (1997), simulated experiments of dynamical andmicrophysical retrieval from Doppler radar data were performed. The 4DVAR data assimilationtechnique was applied to a cloud scale model with a warm rain parameterization scheme. The 3D wind,thermodynamical, and microphysieal fields were determined by minimizing a cost function, defined bythe difference between both radar observed radial velocities and reflectivities and their modelpredictions. The adjoint of the numerical model was used to provide the gradient of the costfunction with respect to the control variables. Experiments have demonstrated that the 4DVARassimilation method is able to retrieve the detailed structure of wind, thermodynamics, andmicrophysics by using either dual-Doppler or single-Doppler information. The quality of retrievaldepends strongly on the magnitude of constraint with respect to the variables. Retrieving thetemperature field, cloud water and water vapor is more difficult than the recovery of the wind fieldand rainwater. Accurate thermodynamic retrieval requires a longer assimilation period. Theinclusion of a background term, even mean fields from a single sounding, helped reduce the retrievalerrors. Less accurate velocity fields were obtained when single-Doppler data were used. It wasfound that the retrieved velocity is sensitive to the location of the retrieval domain relative tothe radars while the other fields have very little changes. Two radar volumetric scans are generallyadequate for providing the evolution, although the use of additional volumes improves theretrieval. As the amount of the observations decreases, the performance of the retrieval isdegraded. However, the missing observations can be compensated by adding a background term to thecost function. The technique is robust to random errors in radial velocity and calibration errors inreflectivity. The boundary conditions from the dual-Doppler synthesized win展开更多
基金the Ministry of Science and Technology of China for funding the 973 project (Grant No. 2004CB418304) the Ministry of Finance of China and the China Meteorological Administration for the Special Project of Meteorological Sector [Grant No. GYHY(QX)2007-6-15]
文摘Four-dimensional variational data assimilation (4DVar) is one of the most promising methods to provide optimal analysis for numerical weather prediction (NWP). Five national NWP centers in the world have successfully applied 4DVar methods in their global NWPs, thanks to the increment method and adjoint technique. However, the application of 4DVar is still limited by the computer resources available at many NWP centers and research institutes. It is essential, therefore, to further reduce the computational cost of 4DVar. Here, an economical approach to implement 4DVar is proposed, using the technique of dimension- reduced projection (DRP), which is called "DRP-4DVar." The proposed approach is based on dimension reduction using an ensemble of historical samples to define a subspace. It directly obtains an optimal solution in the reduced space by fitting observations with historical time series generated by the model to form consistent forecast states, and therefore does not require implementation of the adjoint of tangent linear approximation. To evaluate the performance of the DRP-4DVar on assimilating different types of mesoscale observations, some observing system simulation experiments are conducted using MM5 and a comparison is made between adjoint-based 4DVar and DRP-4DVar using a 6-hour assimilation window.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40325014, 40333031SRFDP, TRAP0YT, FANEDD 11999, and under the support of The Key Scientific and Technological Project of the Ministry of Education The State Key Basic Research Program (Grant No. 2004CB18300).
文摘The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.
基金partially supported by the National Key R&D Program of China (Grant No. 2016YFA0600203)the National Natural Science Foundation of China (Grant No. 41575100)
文摘This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.
基金supported by the General Project of Top-Design of Multi-Scale Nature-Social ModelsData Support and Decision Support System for NSFC Carbon Neutrality Major Project(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions
基金This work is supported by the National Key Program of Science and Technology of China (2001BA610A).
文摘Based on a cloud model and the four-dimensional variational (4DVAR) dataassimilation method developed by Sun and Crook (1997), simulated experiments of dynamical andmicrophysical retrieval from Doppler radar data were performed. The 4DVAR data assimilationtechnique was applied to a cloud scale model with a warm rain parameterization scheme. The 3D wind,thermodynamical, and microphysieal fields were determined by minimizing a cost function, defined bythe difference between both radar observed radial velocities and reflectivities and their modelpredictions. The adjoint of the numerical model was used to provide the gradient of the costfunction with respect to the control variables. Experiments have demonstrated that the 4DVARassimilation method is able to retrieve the detailed structure of wind, thermodynamics, andmicrophysics by using either dual-Doppler or single-Doppler information. The quality of retrievaldepends strongly on the magnitude of constraint with respect to the variables. Retrieving thetemperature field, cloud water and water vapor is more difficult than the recovery of the wind fieldand rainwater. Accurate thermodynamic retrieval requires a longer assimilation period. Theinclusion of a background term, even mean fields from a single sounding, helped reduce the retrievalerrors. Less accurate velocity fields were obtained when single-Doppler data were used. It wasfound that the retrieved velocity is sensitive to the location of the retrieval domain relative tothe radars while the other fields have very little changes. Two radar volumetric scans are generallyadequate for providing the evolution, although the use of additional volumes improves theretrieval. As the amount of the observations decreases, the performance of the retrieval isdegraded. However, the missing observations can be compensated by adding a background term to thecost function. The technique is robust to random errors in radial velocity and calibration errors inreflectivity. The boundary conditions from the dual-Doppler synthesized win