Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X...Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.展开更多
Let L be a linear operator in L 2 (? n ) and generate an analytic semigroup {e ?tL }t?0 with kernel satisfying an upper bound of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let ω on (0,∞) be of upper ...Let L be a linear operator in L 2 (? n ) and generate an analytic semigroup {e ?tL }t?0 with kernel satisfying an upper bound of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let ω on (0,∞) be of upper type 1 and of critical lower type p o (ω) ? (n/(n+θ(L)),1] and ρ(t) = t t1/ω ?1(t ?1) for t ∈ (0,∞). We introduce the Orlicz-Hardy space H ω, L (? n ) and the BMO-type space BMO ρ, L (? n ) and establish the John-Nirenberg inequality for BMO ρ, L (? n ) functions and the duality relation between H ω, L ((? n ) and BMO ρ, L* (? n ), where L* denotes the adjoint operator of L in L 2 (? n ). Using this duality relation, we further obtain the ρ-Carleson measure characterization of BMO ρ, L* (? n ) and the molecular characterization of H ω, L (? n ); the latter is used to establish the boundedness of the generalized fractional operator L ρ ?γ from H ω, L (? n ) to H L 1 (? n ) or L q (? n ) with certain q > 1, where H L (? n ) is the Hardy space introduced by Auscher, Duong and McIntosh. These results generalize the existing results by taking ω(t) = t p for t ∈ (0,∞) and p ∈ (n/(n + θ(L)), 1].展开更多
In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also...In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.展开更多
In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the f...In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the function Ф satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function h E ε△γ(R+) for γ 〉 1 and the sphere function ΩεFβ(S^n-1) for someβ 〉 0 which is distinct from HI(Sn-1).展开更多
In this paper the authors give a new integral estimate of the Bessel function, which is an extension of Calderón-Zygmund’s result. As an application of this result, we prove that the parameterized Marcinkiewicz ...In this paper the authors give a new integral estimate of the Bessel function, which is an extension of Calderón-Zygmund’s result. As an application of this result, we prove that the parameterized Marcinkiewicz integral μ Ω ρ with variable kernels is of type (2, 2), where the kernel function Θ does not have any smoothness on the unit sphere in ? n .展开更多
Hrmander condition for boundedness of multiplier operators will be replaced by a weaker condition described by certain weighted or non-weighted Herz spaces. Some results on boundedness of multiplier operators are then...Hrmander condition for boundedness of multiplier operators will be replaced by a weaker condition described by certain weighted or non-weighted Herz spaces. Some results on boundedness of multiplier operators are then established. As direct corollaries of main theorems in this paper, several celebrated results on boundedness of multiplier operators will be improved or deduced.展开更多
We study the relations between the quaternion H-type group and the boundary of the unit ball on the two-dimensional quaternionic space.The orthogonal projection of the space of square integrable functions defined on q...We study the relations between the quaternion H-type group and the boundary of the unit ball on the two-dimensional quaternionic space.The orthogonal projection of the space of square integrable functions defined on quaternion H-type group into its subspace of boundary values of q- holomorphic functions is considered.The precise form of Cauchy-Szeg(?)kernel and the orthogonal projection operator is obtained.The fundamental solution for the operatorΔ_λis found.展开更多
基金supported by the National Science Foundation of USA (Grant No. DMS 0400387)the University of Missouri Research Council (Grant No. URC-07-067)+1 种基金the National Science Foundation for Distinguished Young Scholars of China (Grant No. 10425106)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. 04-0142)
文摘Let X be an RD-space, i.e., a space of homogeneous type in the sense of Coifman and Weiss, which has the reverse doubling property. Assume that X has a “dimension” n. For α ∈ (0, ∞) denote by H α p (X), H d p (X), and H *,p (X) the corresponding Hardy spaces on X defined by the nontangential maximal function, the dyadic maximal function and the grand maximal function, respectively. Using a new inhomogeneous Calderón reproducing formula, it is shown that all these Hardy spaces coincide with L p (X) when p ∈ (1,∞] and with each other when p ∈ (n/(n + 1), 1]. An atomic characterization for H ?,p (X) with p ∈ (n/(n + 1), 1] is also established; moreover, in the range p ∈ (n/(n + 1),1], it is proved that the space H *,p (X), the Hardy space H p (X) defined via the Littlewood-Paley function, and the atomic Hardy space of Coifman andWeiss coincide. Furthermore, it is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from H p (X) to some quasi-Banach space B if and only if T maps all (p, q)-atoms when q ∈ (p, ∞)∩[1, ∞) or continuous (p, ∞)-atoms into uniformly bounded elements of B.
基金supported by National Science Foundation for Distinguished Young Scholars of China (GrantNo. 10425106)
文摘Let L be a linear operator in L 2 (? n ) and generate an analytic semigroup {e ?tL }t?0 with kernel satisfying an upper bound of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let ω on (0,∞) be of upper type 1 and of critical lower type p o (ω) ? (n/(n+θ(L)),1] and ρ(t) = t t1/ω ?1(t ?1) for t ∈ (0,∞). We introduce the Orlicz-Hardy space H ω, L (? n ) and the BMO-type space BMO ρ, L (? n ) and establish the John-Nirenberg inequality for BMO ρ, L (? n ) functions and the duality relation between H ω, L ((? n ) and BMO ρ, L* (? n ), where L* denotes the adjoint operator of L in L 2 (? n ). Using this duality relation, we further obtain the ρ-Carleson measure characterization of BMO ρ, L* (? n ) and the molecular characterization of H ω, L (? n ); the latter is used to establish the boundedness of the generalized fractional operator L ρ ?γ from H ω, L (? n ) to H L 1 (? n ) or L q (? n ) with certain q > 1, where H L (? n ) is the Hardy space introduced by Auscher, Duong and McIntosh. These results generalize the existing results by taking ω(t) = t p for t ∈ (0,∞) and p ∈ (n/(n + θ(L)), 1].
基金supported by the National Natural Science Foundation of China (Grant No. 10571015)Specialized Research Foundation for Doctor Programme (Grant No. 20050027025)
文摘In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.
基金Supported by the National Natural Science Foundation of China(11071200,11371295)
文摘In this paper, the authors establish the LV-mapping properties for a class of singular integrals along surfaces in Rn of the form {Ф(lul)u' : u ε ]t^n} as well as the related maimal operators provided that the function Ф satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function h E ε△γ(R+) for γ 〉 1 and the sphere function ΩεFβ(S^n-1) for someβ 〉 0 which is distinct from HI(Sn-1).
基金the National Natural Science Foundation of China (Grant No.10571015) the Specialized Research Foundation for Doctor Programme (Grant No.20050027025)
文摘In this paper the authors give a new integral estimate of the Bessel function, which is an extension of Calderón-Zygmund’s result. As an application of this result, we prove that the parameterized Marcinkiewicz integral μ Ω ρ with variable kernels is of type (2, 2), where the kernel function Θ does not have any smoothness on the unit sphere in ? n .
基金the National Natural Science Foundation of China (Grant No. 10571014)
文摘Hrmander condition for boundedness of multiplier operators will be replaced by a weaker condition described by certain weighted or non-weighted Herz spaces. Some results on boundedness of multiplier operators are then established. As direct corollaries of main theorems in this paper, several celebrated results on boundedness of multiplier operators will be improved or deduced.
基金The first author is partially supported by a Competitive Research Grant at Georgetown University(Grant No.GD2236120)The second author is partially supported by grants of the Norwegian Council(Grant Nos.177355/V30,180275/D15)by the grant of the European Science Foundation Networking Programme HCAA.
文摘We study the relations between the quaternion H-type group and the boundary of the unit ball on the two-dimensional quaternionic space.The orthogonal projection of the space of square integrable functions defined on quaternion H-type group into its subspace of boundary values of q- holomorphic functions is considered.The precise form of Cauchy-Szeg(?)kernel and the orthogonal projection operator is obtained.The fundamental solution for the operatorΔ_λis found.