In this paper, we simulate Localized Surface Plasmon Resonance(LSPR) absorption of periodic Au nano-ring arrays and single Au nanoparticles using the Finite Difference Time Domain(FDTD) method. We choose input plane w...In this paper, we simulate Localized Surface Plasmon Resonance(LSPR) absorption of periodic Au nano-ring arrays and single Au nanoparticles using the Finite Difference Time Domain(FDTD) method. We choose input plane waves of different wavelengths and discuss the relation between the absorption peak of the Au array and the variable external dielectric constants. It is found that the sensitivity of these sensors based on LSPR is improved compared to the common sensors and the enhancement is caused by the periodical structure. We also investigate the spectrum characteristic of a single Au nanoparticle and discuss the relation between the absorption peak and the size of the nanoparticle.展开更多
In this work, we present a numerical model to solve the drift diffusion equations coupled with electromagnetic model, where all simulations codes are implemented using MATLAB code software. As first, we present a one-...In this work, we present a numerical model to solve the drift diffusion equations coupled with electromagnetic model, where all simulations codes are implemented using MATLAB code software. As first, we present a one-dimensional (1-D) PIN diode structure simulation achieved by solving the drift diffusion model (DDM). Backward Euler algorithm is used for the discretization of the proposed model. The aim is to accomplish time-domain integration. Also, finite different method (FDM) is considered to achieve space-Domain mesh. We introduced an iterative scheme to solve the obtained matrix systems, which combines the Gummel’s iteration with an efficient direct numerical UMFPACK method. The obtained solutions of the proposed algorithm provide the time and space distribution of the unknown functions like electrostatic potential and carrier’s concentration for the PIN diode. As second case, the finite-difference time-domain (FDTD) technique is adopted to analyze the entire 3-D structure of the stripline circuit including the lumped element PIN diode. The microwave circuit is located in an unbounded medium, requiring absorbing boundaries to avoid nonphysical reflections. Active device results were presented and show a good agreement with other reference. Electromagnetic results are qualitatively in agreement with other results obtained using SILVACO-TCAD.展开更多
基金supported by the Major State Basic Research and Development Program(973 Program) (2006CB302900) National Nature Science Foundation of China(60772026).
文摘In this paper, we simulate Localized Surface Plasmon Resonance(LSPR) absorption of periodic Au nano-ring arrays and single Au nanoparticles using the Finite Difference Time Domain(FDTD) method. We choose input plane waves of different wavelengths and discuss the relation between the absorption peak of the Au array and the variable external dielectric constants. It is found that the sensitivity of these sensors based on LSPR is improved compared to the common sensors and the enhancement is caused by the periodical structure. We also investigate the spectrum characteristic of a single Au nanoparticle and discuss the relation between the absorption peak and the size of the nanoparticle.
文摘In this work, we present a numerical model to solve the drift diffusion equations coupled with electromagnetic model, where all simulations codes are implemented using MATLAB code software. As first, we present a one-dimensional (1-D) PIN diode structure simulation achieved by solving the drift diffusion model (DDM). Backward Euler algorithm is used for the discretization of the proposed model. The aim is to accomplish time-domain integration. Also, finite different method (FDM) is considered to achieve space-Domain mesh. We introduced an iterative scheme to solve the obtained matrix systems, which combines the Gummel’s iteration with an efficient direct numerical UMFPACK method. The obtained solutions of the proposed algorithm provide the time and space distribution of the unknown functions like electrostatic potential and carrier’s concentration for the PIN diode. As second case, the finite-difference time-domain (FDTD) technique is adopted to analyze the entire 3-D structure of the stripline circuit including the lumped element PIN diode. The microwave circuit is located in an unbounded medium, requiring absorbing boundaries to avoid nonphysical reflections. Active device results were presented and show a good agreement with other reference. Electromagnetic results are qualitatively in agreement with other results obtained using SILVACO-TCAD.